
© Copyright IBM Corporation 2003 Trademarks
Refactoring for everyone Page 1 of 19

Refactoring for everyone
How and why to use Eclipse's automated refactoring features

David Gallardo September 09, 2003

Eclipse provides a powerful set of automated refactorings that, among other things, let you
rename Java™ elements, move classes and packages, create interfaces from concrete
classes, turn nested classes into top-level classes, and extract a new method from sections
of code in an old method. Becoming familiar with Eclipse's refactoring tools is a good way
to improve your productivity. This survey of Eclipse's refactoring features, with examples,
demonstrates how and why to use each.

Why refactor?
Refactoring is changing the structure of a program without changing its functionality. Refactoring
is a powerful technique, but it needs to be performed carefully. The main danger is that errors can
inadvertently be introduced, especially when refactoring is done by hand. This danger leads to a
common criticism of refactoring: why fix code if it isn't broken?

There are several reasons that you might want to refactor code. The first is the stuff of legend:
The hoary old code base for a venerable product is inherited or otherwise mysteriously appears.
The original development team has disappeared. A new version, with new features, must be
created, but the code is no longer comprehensible. The new development team, working night and
day, deciphers it, maps it, and after much planning and design, tears the code to shreds. Finally,
painstakingly, they put it all back together according to the new vision. This is refactoring on a
heroic scale and few have lived to tell this tale.

A more realistic scenario is that a new requirement is introduced to a project that requires a
design change. It's immaterial whether this requirement was introduced because of an inadvertent
oversight in the original plan or because an iterative approach (such as agile or test-driven
development) is being used that deliberately introduces requirements throughout the development
process. This is refactoring on a much smaller scale, and it generally involves altering the class
hierarchy, perhaps by introducing interfaces or abstract classes, splitting classes, rearranging
classes, and so on.

A final reason for refactoring, when automated refactoring tools are available, is simply as a
shortcut for generating code in the first place -- something like using a spellchecker to type a word

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

developerWorks® ibm.com/developerWorks/

Refactoring for everyone Page 2 of 19

for you when you aren't certain how it's spelled. This mundane use of refactoring -- for generating
getter and setter methods, for example -- can be an effective time saver once you are familiar with
the tools.

Eclipse's refactoring tools aren't intended to be used for refactoring at a heroic scale -- few tools
are -- but they are invaluable for making code changes in the course of the average programmer's
day, whether that involves agile development techniques or not. After all, any complicated
operation that can be automated is tedium that can be avoided. Knowing what refactoring tools
Eclipse makes available, and understanding their intended uses, will greatly improve your
productivity.

There are two important ways that you can reduce the risk of breaking code. One way is to have
a thorough set of unit tests for the code: the code should pass the tests both before and after
refactoring. The second way is to use an automated tool, such as Eclipse's refactoring features, to
perform this refactoring.

The combination of thorough testing and automated refactoring is especially powerful and has
transformed this once mysterious art to a useful, everyday tool. This ability to change the structure
of your code without altering its functionality, quickly and safely, in order to add functionality or
improve its maintainability can dramatically affect the way you design and develop code, whether
you incorporate it into a formal agile methodology or not.

Types of refactoring in Eclipse
Eclipse's refactoring tools can be grouped into three broad categories (and this is the order in
which they appear in the Refactoring menu):

1. Changing the name and physical organization of code, including renaming fields, variables,
classes, and interfaces, and moving packages and classes

2. Changing the logical organization of code at the class level, including turning anonymous
classes into nested classes, turning nested classes into top-level classes, creating interfaces
from concrete classes, and moving methods or fields from a class to a subclass or superclass

3. Changing the code within a class, including turning local variables into class fields, turning
selected code in a method into a separate method, and generating getter and setter methods
for fields

Several refactorings don't fit neatly into these three categories, particularly Change Method
Signature, which is included in the third category here. Apart from this exception, the sections that
follow will discuss Eclipse's refactoring tools in this order.

Physical reorganization and renaming
You can obviously rename or move files around in the file system without a special tool, but
doing so with Java source files may require that you edit many files to update import or package
statements. Similarly, you can easily rename classes, methods, and variables using a text editor's
search and replace functionality, but you need to do this with care, because different classes may
have like-named methods or variables; it can be tedious to go through all the files in a project
making the sure that every instance is correctly identified and changed.

ibm.com/developerWorks/ developerWorks®

Refactoring for everyone Page 3 of 19

Eclipse's Rename and Move are able to makes these changes intelligently, throughout the entire
project, without user intervention, because Eclipse understands the code semantically and is able
to identify references to a specific method, variable, or class names. Making this task easy helps
ensure that method, variable, and class names indicate their intent clearly.

It's quite common to find code that has inappropriate or misleading names because the code was
changed to work differently than originally planned. For example, a program that looks for specific
words in a file might be extended to work with Web pages by using the URL class to obtain an
InputStream. If this input stream was called file originally, it should be changed to reflect its new
more general nature, perhaps to sourceStream. Developers often fail to make changes like this
because it can be a messy and tedious process. This, of course, makes the code confusing to the
next developer who must work with it.

To rename a Java element, simply click on it in the Package Explorer view or select it in a Java
source file, then select Refactor > Rename. In the dialog box, select the new name and choose
whether Eclipse should also change references to the name. The exact fields that are displayed
depend on the type of element that you select. For example, if you select a field that has getter
and setter methods, you can also update the names of these methods to reflect the new field.
Figure 1 shows a simple example.

Figure 1. Renaming a local variable

Like all Eclipse refactorings, after you have specified everything necessary to perform the
refactoring, you can press Preview to see the changes that Eclipse proposes to make, in a
comparison dialog, which lets you veto or approve each change in each affected file, individually. If
you have confidence in Eclipse's ability to perform the change correctly, you can instead just press
OK. Obviously, if you are uncertain what a refactoring will do, you'll want to preview first, but this
isn't usually necessary for simple refactorings like Rename and Move.

Move works very much like Rename: You select a Java element (usually a class), specify its new
location, and specify whether references should also be updated. You can then choose Preview to
examine the changes or OK to carry out the refactoring immediately as shown in Figure 2.

developerWorks® ibm.com/developerWorks/

Refactoring for everyone Page 4 of 19

Figure 2. Moving a class from one package to another

On some platforms (notably Windows), you can also move classes from one package or folder to
another by simply dragging and dropping them in the Package Explorer view. All references will be
updated automatically.

Redefining class relationships
A large set of Eclipse's refactorings let you alter your class relationships automatically. These
refactorings aren't as generally useful as the other types of refactorings that Eclipse has to offer,
but are valuable because they perform fairly complex tasks. When they're useful, they're very
useful.

Promoting anonymous and nested classes
Two refactorings, Convert Anonymous Class to Nested and Convert Nested Type to Top Level, are
similar in that they move a class out of its current to scope to the enclosing scope.

An anonymous class is a kind of syntactic shorthand that lets you instantiate a class implementing
an abstract class or interface where you need it, without having to explicitly give it a class name.
This is commonly used when creating listeners in the user interface, for example. In Listing 1,
assume that Bag is an interface defined elsewhere that declares two methods, get() and set().

ibm.com/developerWorks/ developerWorks®

Refactoring for everyone Page 5 of 19

Listing 1. Bag class
public class BagExample
{
 void processMessage(String msg)
 {
 Bag bag = new Bag()
 {
 Object o;
 public Object get()
 {
 return o;
 }
 public void set(Object o)
 {
 this.o = o;
 }
 };
 bag.set(msg);
 MessagePipe pipe = new MessagePipe();
 pipe.send(bag);
 }
}

When an anonymous class becomes so large that the code becomes difficult to read, you should
consider making the anonymous class a proper class; to preserve encapsulation (in other words,
to hide it from outside classes that don't need to know about it), you should make this a nested
class rather than a top-level class. You can do this by clicking inside the anonymous class and
selecting Refactor > Convert Anonymous Class to Nested. Enter a name for the class, such
as BagImpl, when prompted and then select either Preview or OK. This will change the code as
shown in Listing 2.

Listing 2. Refactored Bag class
public class BagExample
{
 private final class BagImpl implements Bag
 {
 Object o;
 public Object get()
 {
 return o;
 }
 public void set(Object o)
 {
 this.o = o;
 }
 }

 void processMessage(String msg)
 {
 Bag bag = new BagImpl();
 bag.set(msg);
 MessagePipe pipe = new MessagePipe();
 pipe.send(bag);
 }
}

Convert Nested Type to Top Level is useful when you want to make a nested class available
to other classes. You might, for example, be using a value object inside a class -- such as the

developerWorks® ibm.com/developerWorks/

Refactoring for everyone Page 6 of 19

BagImpl class above. If you later decide that this data should be shared between classes, this
refactoring will create a new class file from the nested class. You can do this by highlighting the
class name in the source file (or clicking on the class name in the Outline view) and selecting
Refactor > Convert Nested Type to Top Level.

This refactoring will ask you to provide a name for the enclosing instance. It may offer a
suggestion, such as example, which you can accept. The meaning of this will be clear in a moment.
After pressing OK, the code for the enclosing BagExample class will be changed as shown in Listing
3.

Listing 3. Refactored Bag class
public class BagExample
{
 void processMessage(String msg)
 {
 Bag bag = new BagImpl(this);
 bag.set(msg);
 MessagePipe pipe = new MessagePipe();
 pipe.send(bag);
 }
}

Note that when a class is nested, it has access to the outer class's members. To preserve this
functionality, the refactoring will add an instance of the enclosing class BagExample to the
formerly nested class. This is the instance variable you were previously asked to provide a name
for. It also creates a constructor that sets this instance variable. The new BagImpl class that the
refactoring creates is shown in Listing 4.

Listing 4. BagImpl class
final class BagImpl implements Bag
{
 private final BagExample example;
 /**
 * @paramBagExample
 */
 BagImpl(BagExample example)
 {
 this.example = example;
 // TODO Auto-generated constructor stub
 }
 Object o;
 public Object get()
 {
 return o;
 }
 public void set(Object o)
 {
 this.o = o;
 }
}

If you don't need to preserve access to the BagExample class, as is the case here, you can safely
remove the instance variable and the constructor, and change the code in the BagExample class to
the default no-arg constructor.

ibm.com/developerWorks/ developerWorks®

Refactoring for everyone Page 7 of 19

Moving member within the class hierarchy
Two other refactorings, Push Down and Pull Up, move class methods or fields from a class to its
subclass or superclass, respectively. Suppose you have an abstract class Vehicle, defined as
follows in Listing 5.

Listing 5. Abstract Vehicle class
public abstract class Vehicle
{
 protected int passengers;
 protected String motor;

 public int getPassengers()
 {
 return passengers;
 }
 public void setPassengers(int i)
 {
 passengers = i;
 }
 public String getMotor()
 {
 return motor;
 }
 public void setMotor(String string)
 {
 motor = string;
 }
}

You also have a subclass of Vehicle called Automobile as shown in Listing 6.

Listing 6. Automobile class
public class Automobile extends Vehicle
{
 private String make;
 private String model;
 public String getMake()
 {
 return make;
 }
 public String getModel()
 {
 return model;
 }
 public void setMake(String string)
 {
 make = string;
 }
 public void setModel(String string)
 {
 model = string;
 }
}

Notice that one of the attributes of Vehicle is motor. This is fine if you know that you will only ever
deal with motorized vehicles, but if you want to allow for things like rowboats, you may want to
push the motor attribute down from the Vehicle class into the Automobile class. To do this, select
motor in the Outline view, then select Refactor > Push Down.

developerWorks® ibm.com/developerWorks/

Refactoring for everyone Page 8 of 19

Eclipse is smart enough to realize that you can't always move a field by itself and provides a button
Add Required, but this doesn't always work correctly in Eclipse 2.1. You need to verify that any
methods that depend on this field are also pushed down. In this case there are two, the getter and
setter methods that accompany the motor field, as shown in Figure 3.

Figure 3. Adding required members

After pressing OK, the motor field and the getMotor() and setMotor() methods will be moved to
the Automobile class. Listing 7 shows what the Automobile class looks like after this refactoring.

Listing 7. Refactored Automobile class
public class Automobile extends Vehicle
{
 private String make;
 private String model;
 protected String motor;
 public String getMake()
 {
 return make;
 }
 public String getModel()
 {
 return model;
 }
 public void setMake(String string)
 {
 make = string;
 }
 public void setModel(String string)
 {
 model = string;
 }
 public String getMotor()
 {

ibm.com/developerWorks/ developerWorks®

Refactoring for everyone Page 9 of 19

 return motor;
 }
 public void setMotor(String string)
 {
 motor = string;
 }
}

The Pull Up refactoring is nearly identical to Push down, except, of course, that it moves class
members from a class to its superclass instead of subclass. You might use this if you later
changed your mind and decided to move motor back to the Vehicle class. The same warning
about making sure that you select all required members applies.

Having motor in the Automobile class means that if you create other subclasses of Vehicle, such
as Bus, you'll need to add motor (and its associated methods) to the Bus class too. One way of
representing relationships like this is to create an interface, Motorized, which Automobile and Bus
would implement, but RowBoat would not.

The easiest way to create the Motorized interface is to use the Extract Interface refactoring on
Automobile. To do this, select the Automobile class in the Outline view and then choose Refactor
> Extract Interface from the menu. The dialog will allow you to select which methods you want
included in the interface as shown in Figure 4.

Figure 4. Extracting the Motorized interface

After selecting OK, an interface is created, as shown in Listing 8.

Listing 8. Motorized interface
public interface Motorized
{
 public abstract String getMotor();
 public abstract void setMotor(String string);
}

developerWorks® ibm.com/developerWorks/

Refactoring for everyone Page 10 of 19

And the class declaration for Automobile is altered as follows:

public class Automobile extends Vehicle implements Motorized

Using a supertype

The final refactoring included in this category is Use Supertype Where Possible. Consider
an application that manages an inventory of automobiles. Throughout, it uses objects of type
Automobile. If you wanted to be able to handle all types of vehicles, you could use this refactoring
to change references to Automobile to references to Vehicle (see Figure 5). If you perform any
type-checking in your code using the instanceof operator, you will need to determine whether it is
appropriate to use the specific type or the supertype and check the first option, Use the selected
supertype in 'instanceof' expressions, appropriately.

Figure 5. Changing Automobile to its supertype, Vehicle

The need for using a supertype arises frequently in the Java language, especially when the
Factory Method pattern is used. Typically this is implemented by having an abstract class that has
a static create() method that returns a concrete object implementing the abstract class. This can
be useful if the type of concrete object that must be created depends on implementation details
that are of no interest to client classes.

Changing code within a class
The largest variety of refactorings are those that reorganize code within a class. Among other
things, these allow you to introduce (or remove) intermediate variables, create a new method from
a portion of an old one, and create getter and setter methods for a field.

Extracting and inlining

There are several refactorings beginning with the word Extract: Extract Method, Extract Local
Variable, and Extract Constants. The first one, Extract Method, as you might expect, will create
a new method from code you've selected. Take, for example, the main() method in the class in
Listing 8. It evaluates command-line options and if it finds any that begin with -D, stores them as
name-value pairs in a Properties object.

ibm.com/developerWorks/ developerWorks®

Refactoring for everyone Page 11 of 19

Listing 8. main()
import java.util.Properties;
import java.util.StringTokenizer;
public class StartApp
{
 public static void main(String[] args)
 {
 Properties props = new Properties();
 for (int i= 0; i < args.length; i++)
 {
 if(args[i].startsWith("-D"))
 {
 String s = args[i].substring(2);
 StringTokenizer st = new StringTokenizer(s, "=");
 if(st.countTokens() == 2)
 {
 props.setProperty(st.nextToken(), st.nextToken());
 }
 }
 }
 //continue...
 }
}

There are two main cases where you might want to take some code out of a method and put it in
another method. The first case is if the method is too long and does two or more logically distinct
operations. (We don't know what else this main() method does, but from the evidence we see
here, that's not a reason for extracting a method here.) The second case is if there is a logically
distinct section of code that can be re-used by other methods. Sometimes, for example, you find
yourself repeating several lines of code in several different methods. That's a possibility in this
case, but you probably wouldn't perform this refactoring until you actually needed to re-use this
code.

Assuming there is another place where you need to parse name-value pairs and add them to
a Properties object, you could extract the section of code that includes the StringTokenizer
declaration and following if clause. To do this, highlight this code and then select Refactor >
Extract Method from the menu. You'll be prompted for a method name; enter addProperty, and
then verify that the method has two parameters, Properties prop and Strings. Listing 9 shows
the class after Eclipse extracts the method addProp().

Listing 9. addProp() extracted
import java.util.Properties;
import java.util.StringTokenizer;
public class Extract
{
 public static void main(String[] args)
 {
 Properties props = new Properties();
 for (int i = 0; i < args.length; i++)
 {
 if (args[i].startsWith("-D"))
 {
 String s = args[i].substring(2);
 addProp(props, s);
 }
 }

developerWorks® ibm.com/developerWorks/

Refactoring for everyone Page 12 of 19

 }
 private static void addProp(Properties props, String s)
 {
 StringTokenizer st = new StringTokenizer(s, "=");
 if (st.countTokens() == 2)
 {
 props.setProperty(st.nextToken(), st.nextToken());
 }
 }
}

The Extract Local Variable refactoring takes an expression that is being used directly and assigns
it to a local variable first. This variable is then used where the expression used to be. For example,
in the addProp() method above, you can highlight the first call to st.nextToken() and select
Refactor > Extract Local Variable. You will be prompted to provide a variable; enter key. Notice
that there is an option to replace all occurrences of the selected expression with references to
the new variable. This is often appropriate, but not in this case of the nextToken() method, which
(obviously) returns a different value each time it is called. Make sure this option is not selected;
see Figure 6.

Figure 6. Don't replace all occurrences of selected expression

Next, repeat this refactoring for the second call to st.nextToken(), this time calling the new local
variable value. Listing 10 shows the code after these two refactorings.

Listing 10. Refactored code

private static void addProp(Properties props, String s)
 {
 StringTokenizer st = new StringTokenizer(s, "=");
 if(st.countTokens() == 2)
 {
 String key = st.nextToken();
 String value = st.nextToken();
 props.setProperty(key, value);
 }
 }

Introducing variables in this way provides several benefits. First, by providing meaningful names
to the expressions, it makes explicit what the code is doing. Second, it makes it easier to debug

ibm.com/developerWorks/ developerWorks®

Refactoring for everyone Page 13 of 19

the code, because we can easily inspect the values that the expressions return. Finally, in cases
where multiple instances of an expression can be replaced with a single variable, this can be more
efficient.

Extract Constant is similar to Extract Local Variable, but you must select a static, constant
expression, which the refactoring will convert to a static final constant. This is useful for removing
hard-coded numbers and strings from your code. For example, in the code above we used -D" for
the command line option defining a name-value pair. Highlight -D" in the code, select Refactor >
Extract Constant, and enter DEFINE as the name of the constant. This refactoring will change the
code as shown in Listing 11.

Listing 11. Refactored code
public class Extract
{
 private static final String DEFINE = "-D";
 public static void main(String[] args)
 {
 Properties props = new Properties();
 for (int i = 0; i < args.length; i++)
 {
 if (args[i].startsWith(DEFINE))
 {
 String s = args[i].substring(2);
 addProp(props, s);
 }
 }
 }
 // ...

For each Extract... refactoring, there is a corresponding Inline... refactoring that performs the
reverse operation. For example, if you highlight the variable s in the code above, select Refactor
> Inline..., then press OK, Eclipse use the expression args[i].substring(2) directly in the call to
addProp() as follows:

 if(args[i].startsWith(DEFINE))
 {
 addProp(props,args[i].substring(2));
 }

This can be marginally more efficient than using a temporary variable and, by making the code
terser, makes it either easier to read or more cryptic, depending on your point of view. Generally,
however, inlining like this does not have much to recommend it.

In the same way that you can replace a variable with an inline expression, you can also highlight a
method name or a static final constant. Select Refactor > Inline... from the menu, and Eclipse will
replace method calls with the method code, or references to the constant with the constants value,
respectively.

Encapsulating fields
It's generally not considered good practice to expose the internal structure of your objects. That's
why the Vehicle class, and its subclasses, have either private or protected fields, and public setter

developerWorks® ibm.com/developerWorks/

Refactoring for everyone Page 14 of 19

and getter methods to provide access. These methods can be generated automatically in two
different ways.

One way to generate these methods is to use the Source > Generate Getter and Setter. This
will display a dialog box with the proposed getter and setter methods for each field that does not
already have one. This is not a refactoring, though, because it does not update references to
the fields to use the new methods; you'll need to that yourself if necessary. This option is a great
time saver, but it's best used when creating a class initially, or when adding new fields to a class,
because no other code references these fields yet, so there's no other code to change.

The second way to generate getter and setter methods is to select the field and then choose
Refactor > Encapsulate Field from the menu. This method only generates getters and setters for
a single field at a time, but in contrast to Source > Generate Getter and Setter, it also changes
references to the field into calls to the new methods.

For example, start fresh with a new, simple version of the Automobile class, as shown in Listing
12.

Listing 12. Simple Automobile class

public class Automobile extends Vehicle
{
 public String make;
 public String model;
}

Next, create a class that instantiates Automobile and accesses the make field directly, as shown in
Listing 13.

Listing 13. Instantiate Automobile

public class AutomobileTest
{
 public void race()
 {
 Automobilecar1 = new Automobile();
 car1.make= "Austin Healy";
 car1.model= "Sprite";
 // ...
 }
}

Now encapsulate the make field by highlighting the field name and selecting Refactor >
Encapsulate Field. In the dialog, enter names for the getter and setter methods -- as you might
expect, these are getMake() and setMake() by default. You can also choose whether methods
that are in the same class as the field will continue to access the field directly or whether these
references will be changed to use the access methods like all other classes. (Some people have a
strong preference one way or the other, but as it happens, it doesn't matter what you choose in this
case, since there are no references to the make field in Automobile). See Figure 7.

ibm.com/developerWorks/ developerWorks®

Refactoring for everyone Page 15 of 19

Figure 7. Encapsulating a field

After pressing OK, the make field in the Automobile class will be private and will have getMake()
and setMake() methods as shown in Listing 14.

Listing 14. Refactored Automobile class
public class Automobile extends Vehicle
{
 private String make;
 public String model;

 public void setMake(String make)
 {
 this.make = make;
 }

 public String getMake()
 {
 return make;
 }
}

The AutomobileTest class will also be updated to use the new access methods, as shown in
Listing 15.

Listing 15. AutomobileTest class
public class AutomobileTest
{
 public void race()
 {
 Automobilecar1 = new Automobile();
 car1.setMake("Austin Healy");
 car1.model= "Sprite";
 // ...
 }
}

Change Method Signature
The final refactoring considered here is the most difficult to use: Change Method Signature. It's
fairly obvious what this does -- change the parameters, visibility, and return type of a method.
What isn't so obvious is the effect these changes have on the method or on the code that calls the

developerWorks® ibm.com/developerWorks/

Refactoring for everyone Page 16 of 19

method. There is no magic here. If the changes cause problems in the method being refactored --
because it leaves undefined variables or mismatched types -- the refactoring operations will flag
these. You have the option to accept the refactoring anyway and correct the problems afterwards,
or cancel the refactoring. If the refactoring causes problems in other methods, these are ignored
and you must fix them yourself after the refactoring.

To clarify this, consider the following class and method in Listing 16.

Listing 16. MethodSigExample class

public class MethodSigExample
{
 public int test(String s, int i)
 {
 int x = i + s.length();
 return x;
 }
}

The method test() in the class above is called by a method in another class, as shown in Listing
17.

Listing 17. callTest method

public void callTest()
 {
 MethodSigExample eg = new MethodSigExample();
 int r = eg.test("hello", 10);
 }

Highlight test in the first class and select Refactor > Change Method Signature. The dialog box
in Figure 8 will appear.

ibm.com/developerWorks/ developerWorks®

Refactoring for everyone Page 17 of 19

Figure 8. Change Method Signature options

The first option is to change the method's visibility. In this example, changing it to protected or
private would prevent the callTest() method in the second class from accessing. (If they were in
separate packages, changing access to default would also cause this problem.) Eclipse will not
flag this error while performing the refactoring; it's up to you to select an appropriate value.

The next option is to change the return type. Changing the return type to float, for example,
isn't flagged as an error because an int in the test() method's return statement is automatically
promoted to float. Nonetheless, this will result in a problem in the callTest() in the second class,
because a float cannot be converted to int. You will need to either cast the return value returned
by test() to int or change the type of r in callTest() to float.

Similar considerations apply if we change the type of the first parameter from String to int. This
will be flagged during refactoring because it causes a problem in the method being refactored: int
does not have a length() method. Changing it to StringBuffer, however, will not be flagged as
problem, because it does have a length() method. This will, of course, cause a problem in the
callTest() method, because it is still passing a String when it calls test().

As mentioned previously, in cases where this refactoring results in an error, whether flagged or not,
you can continue by simply correcting the errors on a case-by-case basis. Another approach is
to preempt errors. If you want to remove the parameter i, because it's unneeded, you could start
by removing references to it in the method being refactored. Removing the parameter will then go
more smoothly.

developerWorks® ibm.com/developerWorks/

Refactoring for everyone Page 18 of 19

One final thing to be explained is the Default Value option. This is only used when a parameter is
being added to the method signature. It is used to provide a value when the parameter is added to
callers. For example, if we add a parameter of type String, with a name n, and a default value of
world, the call to test() in the callTest() method will be changed as follows:

 public void callTest()
 {
 MethodSigExample eg = new MethodSigExample();
 int r = eg.test("hello", 10, "world");
 }

The point to take away from this seemingly dire discussion about the Change Method Signature
refactoring is not that it is problematic, but rather that it is a powerful, time-saving refactoring that
often requires thoughtful planning to be used successfully.

Summary

Eclipse's tools make refactoring easy, and becoming familiar with them can help you improve
your productivity. Agile development methods, which add program features iteratively, depend on
refactoring as a technique to alter and extend a program's design. But even if you are not using
a formal method that requires refactoring, Eclipse's refactoring tools provide a time-saving way to
make common types of code changes. Taking some time to become familiar with them so that you
can recognize the situations where they can be applied is a worthwhile investment of your time.

ibm.com/developerWorks/ developerWorks®

Refactoring for everyone Page 19 of 19

Related topics

• The key text on refactoring is Refactoring: Improving the Design of Existing Code by Martin
Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts (Addison-Wesley, 1999).

• Refactoring, as an ongoing process, is discussed by the author in the context of designing and
developing a project in Eclipse in Eclipse In Action: A Guide for Java Developers, by David
Gallardo, Ed Burnette, and Robert McGovern (Manning, 2003).

• Patterns (such as the Factory Method mentioned in this article) are an important tool for
understanding and discussing object-oriented design. The classic text is Design Patterns:
Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph
Johnson, John Vlissides (Addison-Wesley, 1995).

• One drawback for the Java programmer is that the examples in Design Patterns use C++; for
a book that translates patterns to the Java language, see Patterns in Java, Volume One: A
Catalog of Reusable Design Patterns Illustrated with UML, Mark Grand (Wiley, 1998).

• For an introduction to one variety of agile programming, see Extreme Programming Explained:
Embrace Change, by Kent Beck (Addison-Wesley, 1999).

• Martin Fowler's Web site is refactoring central on the Web.
• For more information on unit testing with JUnit, visit the JUnit Web site.
• "Java design patterns 101" is David's introductory tutorial on patterns (developerWorks,

January 2002).
• In "Getting started with the Eclipse Platform," David provides a starting point for learning more

about Eclipse (developerWorks, November 2002).
• Find more articles for Eclipse users in the Open source projects zone on developerWorks.

Also see the latest Eclipse technology downloads on alphaWorks.

© Copyright IBM Corporation 2003
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://www.refactoring.com/
http://www.junit.org
http://www.ibm.com/developerworks/edu/j-dw-javapatt-i.html
http://www.ibm.com/developerworks/opensource/library/os-ecov/
http://www.ibm.com/developerworks/views/opensource/articles.jsp?sort_order=desc&expand=&sort_by=Date&show_abstract=false&view_by=Eclipse&search_by=
http://www-124.ibm.com/developerworks/oss/
http://www.alphaworks.ibm.com/eclipse/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Why refactor?
	Types of refactoring in Eclipse
	Physical reorganization and renaming
	Redefining class relationships
	Promoting anonymous and nested classes
	Moving member within the class hierarchy
	Using a supertype

	Changing code within a class
	Extracting and inlining
	Encapsulating fields
	Change Method Signature

	Summary
	Trademarks

