
998 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 2, SECOND QUARTER 2015

Android Security: A Survey of Issues,
Malware Penetration, and Defenses

Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor, Manoj Singh Gaur,
Mauro Conti, Senior Member, IEEE, and Muttukrishnan Rajarajan

Abstract—Smartphones have become pervasive due to the avail-
ability of office applications, Internet, games, vehicle guidance us-
ing location-based services apart from conventional services such
as voice calls, SMSes, and multimedia services. Android devices
have gained huge market share due to the open architecture of An-
droid and the popularity of its application programming interface
(APIs) in the developer community. Increased popularity of the
Android devices and associated monetary benefits attracted the
malware developers, resulting in big rise of the Android malware
apps between 2010 and 2014. Academic researchers and commer-
cial antimalware companies have realized that the conventional
signature-based and static analysis methods are vulnerable. In
particular, the prevalent stealth techniques, such as encryption,
code transformation, and environment-aware approaches, are ca-
pable of generating variants of known malware. This has led
to the use of behavior-, anomaly-, and dynamic-analysis-based
methods. Since a single approach may be ineffective against the
advanced techniques, multiple complementary approaches can
be used in tandem for effective malware detection. The existing
reviews extensively cover the smartphone OS security. However,
we believe that the security of Android, with particular focus on
malware growth, study of antianalysis techniques, and existing
detection methodologies, needs an extensive coverage. In this sur-
vey, we discuss the Android security enforcement mechanisms,
threats to the existing security enforcements and related issues,
malware growth timeline between 2010 and 2014, and stealth
techniques employed by the malware authors, in addition to the
existing detection methods. This review gives an insight into the
strengths and shortcomings of the known research methodologies
and provides a platform, to the researchers and practitioners,
toward proposing the next-generation Android security, analysis,
and malware detection techniques.

Index Terms—Android malware, static analysis, dynamic anal-
ysis, behavioral analysis, obfuscation, stealth malware.

Manuscript received May 14, 2014; revised October 16, 2014; accepted
December 9, 2014. Date of publication December 30, 2014; date of current
version May 19, 2015. This work was supported in part by the TENACE
PRIN Project 20103P34XC funded by the Italian MIUR and in part by
the Project “Tackling Mobile Malware with Innovative Machine Learning
Techniques” funded by the University of Padua. The work of M. Conti was
supported by Marie Curie Fellowship PCIG11-GA-2012-321980, funded by the
European Commission for the PRISM CODE Project. The work of P. Faruki,
M. S. Gaur, and V. Laxmi was supported in part by the Department of
Information Technology, Government of India Project Grant “Security Analysis
Framework for Android Platform”.

P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, and M. S. Gaur are with the
Computer Engineering Department, Malaviya National Institute of Technology
(MNIT), Jaipur 302 017, India (e-mail: 2012rcp9518@mnit.ac.in; vlaxmi@
mnit.ac.in; gaurms@mnit.ac.in).

M. Conti is with the Department of Mathematics, University of Padua, 35122
Padua, Italy (e-mail: conti@math.unipd.it).

M. Rajarajan is with the School of Engineering and Mathematical Sciences,
Electrical and Electronics Engineering, City University London, EC1V 0HB
London, U.K. (e-mail: r.muttukrishnan@city.ac.uk).

Digital Object Identifier 10.1109/COMST.2014.2386139

I. INTRODUCTION

ANDROID smartphone OS has captured more than 75%
of the total market-share, leaving its competitors iOS,

Windows mobile OS and Blackberry far behind [1]. Even
though smartphones were used in the previous decade, since
2008, iOS and Android smartphone OS has generated an enor-
mous attraction among the users and developers worldwide.
Smartphones have become ubiquitous due to a wide range of
connectivity options such as GSM, CDMA, Wi-Fi, GPS, Blue-
tooth and NFC. Gartner smartphone sale report 2013 reports
42.3% in Android devices compared to the previous year [1].
The overall market share increased to 78% from 66%, substan-
tial rise of 12% among the users. However, the nearest Android
competitor iOS sale decreased 4%, from 19 to 15 percent.
Ubiquitous Internet connectivity and availability of personal
information such as contacts, messages, social network access,
browsing history and banking credentials has attracted the
attention of malware developers towards the mobile devices
in general and Android in particular. Android malware such
as premium-rate SMS Trojans, spyware, botnets, aggressive
adware and privilege escalation attack exploits reported expo-
nential rise apart from being distributed from the secure Google
Playstore and well known third-party market places [2]–[4].

Android popularity has encouraged the developers to provide
innovative applications popularly called apps. Google Play, the
official Android app market, hosts the third party developer
apps for a nominal fee. Google Play hosts more than a million
apps with a large number of downloads each day [5]. Unlike
the Apple appstore, Google Play does not verify the uploaded
apps manually. Instead, official market depends on Bouncer [6],
[7], a dynamic emulated environment to control and protect the
market place from the malicious app threats. Though Bouncer
protects against the malware threats, it does not analyze the
vulnerabilities among uploaded apps [8]. Malware authors take
advantage of such vulnerable apps and divulge the private
user information to inadvertently harm the app-store and the
developer reputation. Moreover, Android open source philoso-
phy permits the installation of third-party market apps, stirring
up dozens of regional and international app-stores [9]–[13].
However, the adequate protection methods and app quality at
third-party app-stores is a concern [4].

Android security solution providers report an alarming rise
of malware from just three malware families with 100 samples
in 2010, to more than hundred families consisting 0.12–0.6
million unique samples in the quarter four, 2013 [14]–[19]. The
number of malicious apps uploaded on VirusTotal [20] is in-
creasing exponentially. Malware authors use stealth techniques,

1553-877X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

FARUKI et al.: ANDROID SECURITY: A SURVEY OF ISSUES, MALWARE PENETRATION, AND DEFENSES 999

dynamic execution, code obfuscation methods, repackaging
and encryption [21], [22] to bypass the existing protection
mechanisms provided by the Android platform and commercial
anti-malware. Existing malware propagates by employing the
above techniques and defeats the conventional signature-based
approaches. The new techniques that adapt to the smartphone
platform and provide timely response are an imminent need
for the Android platform. Proactive methods to detect un-
known malware employing in-frequent signature updates, in-
contrast to one signature for each malware are desirable for
Android.

Malware app developers gain smartphone control by ex-
ploiting platform vulnerabilities [23], stealing sensitive user
information [21], to extract monetary benefits by exploiting
the telephony services [24] or creating botnet [25]. Thus, it
is important to understand their operational activities, working
models and usage patterns to devise the proactive detection for
mobile devices.

Exponentially increasing malicious apps has forced the anti-
malware industry to carve out robust and efficient methods
suited for on device detection within the existing constraints.
The existing commercial anti-malware solutions employ sig-
nature based detection due to its implementation efficiency
[26] and simplicity. Signature based methods can be easily
circumvented using code obfuscation necessitating a new sig-
nature for each malware variant [27], forcing the anti-malware
client to regularly update its signature database. Due to the lim-
ited processing capability and constrained battery availability,
cloud-based solutions for analysis and detection have come into
existence [28], [29]. Manual analysis and malware signature
extraction requires sufficient time and expertise. It can also
generate false negatives (FN) while generating signatures for
the variants of known families. Due to the exponential increased
malware variants, there is a need to employ automatic signature
generation methods that incur low false alarms.

Off-device malware analysis methods are needed to un-
derstand the malware functionality. Samples can be analyzed
manually to extract the malware signatures. However, given the
rapid rise of malware, there is an urgent need of the analysis
methods requiring minimum human intervention. Automatic
analysis helps the malware analyst generate timely response
to detect the unseen malware. Static analysis can quickly and
precisely identify malware patterns. However, it fails against
code transformations, native code and Java reflections [30].
Thus, dynamic analysis approaches, though time consuming, is
an alternative to extract malicious behavior of a stealth malware
by executing them in a sandbox environment.

Academia and industry researchers have proposed solutions
and frameworks to analyze, and detect the Android malware
threats. Some of these are even available as open-source.
These solutions can be characterized using the following three
parameters:

1) Goal of the proposed solution can be either app-
security assessment, analysis or malware detection.
App-security assessment solutions determines the vulner-
abilities, which if exploited by an adversary, harms the
user and device security. Analysis solutions check for the

malicious behavior within unknown apps, whereas detec-
tion solutions aim to prevent the on-device installation.

2) Methodology to achieve the above goals can be either
static or dynamic analysis based approaches to detect
malware. Control-flow and data-flow analysis are the ex-
amples of formal static analysis [29]. In dynamic analysis,
apps are executed/emulated in a sandboxed environment,
in order to monitor their activities and identify anomalous
behaviors, that are otherwise difficult with static analysis.

3) Deployment of the above discussed solutions.

Existing smartphone security surveys review the state of the
art considering the popular mobile OS platforms [31], [32].
However, this review paper focuses on Android platform, the
most popular mobile device OS. La Polla et al. [32] sur-
veyed the smartphone security threats and their solutions for
the period 2004–2011, which has very limited coverage of
Android.

Suarez-Tangil et al. [31] extended the work of La Polla et al.
[32]. In particular, they concentrated on smartphone sensor
feature based misuse attacks such as hardware, communication,
sensors and system. Authors gave an insight into the misuse
of specific Android features affecting the overall device se-
curity. Authors categorized the malware based on their attack
goals, distribution, infection and privilege acquisition. On the
contrary, this review categorizes the malware according to the
commercial anti-malware industry terminology and provides
an accurate description of malware infection rate and threat
perception between 2010–2014.

In 2011, William Enck [33] studied the Android security
mechanisms, particularly protection through permissions and
security implications of inter-app communication. Moreover,
author discussed other third-party Android platform hardening
solutions, their benefits and limitations. In addition, the study
also examined app security analysis proposals and presented
future directions to enhance the Android platform security.

This paper aims to complement the former reviews by ex-
panding the coverage of Android security issues, and malware
growth between 2010–14. The paper discusses code transfor-
mation methods and strength and limitations of notable mal-
ware analysis and detection methodologies. In particular, this
paper comprehensively cover stealth techniques used by mal-
ware authors to evade the detection by generating variants of the
already known malware. Finally, we propose a hybrid Android
malware analysis and detection framework, an insight into our
future research directions. This survey paper is organized as
follows.

Section II discusses the Android app architecture and secu-
rity enforcement mechanisms employed to weaken the attack
surfaces. Section III covers Android security issues in-spite
of existing enforcements discussed in Section II. Section III
covers major security enhancements in the subsequent An-
droid versions to tackle the enumerated issues. Section IV
presents the time-line illustrating notable Android malware
families between 2010–2013 and categorizes them according
to their functionality. Section V covers various penetration
and stealth techniques employed by the advanced android
malware.

1000 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 2, SECOND QUARTER 2015

Sections VI and VII categorize the prominent assessment,
analysis, detection methods along with their deployment so-
lutions respectively. Section VIII classifies the state of the
art tools proposed by the academia and anti-malware industry
according to their functionality covered in Section VI. This
section discusses the strengths and drawbacks of well known
analysis techniques, tools and summarize as per the functional-
ity discussed in Table I. Comparison of the popular, web based
analysis sandbox is illustrated in Table II. Finally, Section IX
concludes this paper and proposes a hybrid malware analysis
and detection framework as a recommendation for the future
research directions.

II. ANDROID APP AND SECURITY ARCHITECTURE

Android is being developed under Android Open Source
Project (AOSP), maintained by Google and promoted by the
Open Handset Alliance (OHA). It consists of the Original
Equipment Manufacturers (OEMs), chip-makers, carriers and
application developers. Android apps are written in Java, how-
ever the native code and shared libraries are developed in
C/C++. Typical Android architecture is illustrated in Fig. 1. The
bottom layer Linux kernel is customized specifically for the
embedded environment consisting limited resources. Android
is developed on top of Linux kernel due to its robust driver
model, efficient memory and process management, networking
support for the core services. Currently, Android supports two
Instruction Set Architectures: 1) ARM, prevalent on smart-
phones, Tablets; 2) x86, prevalent among the Mobile Internet
Devices (MIDs). On the top of the Linux kernel, the native
libraries developed in C/C++ support high performance third-
party reusable, shared libraries.

Android user app, written in Java language is translated
to Dalvik byte code that runs under newly created runtime,
the Dalvik Virtual Machine (DVM) as illustrated in Fig. 1. It
is specifically optimized for the resource constrained mobile
OS platform. Once the OS boot completes, a process known
as zygote initializes the Dalvik VM by pre-loading the core
libraries. Zygote then waits through a socket to load the newly
forked processes. Zygote process speeds up the app loading the
instances of libraries to be shared with the new loaded user
apps. Finally, the application framework provides a uniform
and concise view of the Java libraries to the app developer.
Android protects the sensitive functionality such as telephony,
GPS, network, power-management, radio and media as system
services with the permission based model.

A. App Structure

Android app is packaged into an APK .apk, a zip archive
consisting several files and folders as shown illustrated in Fig. 2.
In particular, the AndroidManifest.xml stores the meta-data
such as package name, permissions required, definitions of one
or more components like Activities, Services, Broadcast Re-
ceivers or Content Providers, minimum and maximum version
support, libraries to be linked etc. Folder res stores icons,
images, string/numeric/color constants, UI layouts, menus, ani-
mations compiled into the binary. Folder assets contains non-
compiled resources. Executable file classes.dex stores the

Fig. 1. Android Architecture [34].

Dalvik bytecode to be executed on the Dalvik Virtual Machine.
META−INF stores the signature of the app developer certificate
to verify the third party developer identity.

As mentioned previously, the Android apps are developed
in Java. The development process is illustrated in Fig. 3. Com-
piled Java code generates a number of .class files, interme-
diate Java-bytecode of the classes defined in the source. Using
the dx tool, .class files merged into a single Dalvik Executable
(.dex). The .dex file stores the Dalvik bytecode to be executed
on the DVM to speedup the execution.

B. App Components

An Android app is composed of one or more components
discussed below:

• Activity: It is the user interface component of an app. Any
number of activities can be declared within the manifest
depending on the developer requirements. Apart from
some pre-defined task, an activity can also return the result
to its caller. Activities are launched using the Intents as
explained in the Section II-C.

• Service: Service component performs background tasks
without any UI. For example, playing an audio or down-
load data from the network. Services are launched using
Intents further discussed in the Section II-C.

• Broadcast Receiver: This component listens to the An-
droid system generated events. For example, BOOT_
COMPLETED, SMS_RECEIVED etc. are system events. Other
apps can broadcast their own application-defined events,

FARUKI et al.: ANDROID SECURITY: A SURVEY OF ISSUES, MALWARE PENETRATION, AND DEFENSES 1001

Fig. 2. Android PacKage (APK) Structure.

which can be handled by other the apps using the Service
component.

• Content Provider: Content provider also known as the
data-store, provides a consistent interface for data access
between within and between different apps. Externally,
the data within the content provider appears relational.
However, it may have a completely different storage
implementation. Data-store is accessible through the
application-defined Uniform Resource Identifiers (URIs).

Component is made accessible to the other apps by explicitly
exporting it. Listing 1 discusses the declaration of components
as an usage example definition the AndroidManifest.xml
binary. The declared component(s) can be invoked or executed
independently since the app component development and com-
munication is asynchronous. Android app has multiple entry-
points, depending on the number of components an application
defines.

C. Inter-Component Communication

Android Security protects apps and data with combination
of system level and Inter Component Communication (ICC)
[35]. ICC defines the core security utilizing the guarantee of the
Linux framework. An app runs with a unique user-id to thwart
the programming issues. Android middleware mediates the ICC
between application and components. Access to a component is
restricted by assigning an access permission label. When a com-
ponent initiates ICC, the reference monitor looks at the permis-
sion labels assigned to its container app. If the target component
access permission label is in the said collection, it allows ICC
to be initiated. If the label does not belong to the collection,
ICC establishment is refused even if the components are a part
of same app. The developer assigns permission labels through
the Manifest within an app. Developer defines the app security

Fig. 3. App Building Process.

policy, whereas assigning permission to the components in an
application specifies an access policy to protect its resources.

App components interact with each other at a high-level
abstraction of inter-process communication (IPC) using Intent,
handled by the Binder IPC driver. Apps invoke the activities
and services and sends the broadcast events with Intents. Sys-
tem events are also broadcast through the Intents. Intent(s)
can contain explicit address of the receiver components using
class/package name field. Depending upon the presence of
action, category and data fields, system sends implicit Intents
to one or more matching receiver components. Each component
registers itself to receive the Intent(s) using one or more intent-
filter. It is also specified if the kind of action, category and/or
data can be accepted by the intent. As shown in the Listing 1,
service component is only invoked when it receives the system
Intent with action equals to BOOT_COMPLETED in the List-
ing at line number 29.

D. App Sandboxing

Android has been designed as secure mobile OS with a mo-
tive to protect the user data, developer apps, the device, and the
network [34]. However, the security depends on the developer
willingness and capabilities to adhere the best development
practices. Also, user must be aware of the effect an app may
have on the data and device security. Anti-malware solutions
do not have sufficient rights to perform aggressive malware
checks due to enforced OS security model. For example, anti-
malware apps have a restricted scanning and/or monitoring
capabilities and/or file-system in the device. This section covers
the Android security features.

Android Kernel implements the Linux Discretionary Access
Control (DAC). Each app process is protected with an assigned
a unique id (UID) within a isolated sandbox. The sandboxing
restrains the other apps or their system services from interfering
the other app. Android protects network access by implement-
ing a feature Paranoid Network Security, a feature to control
Wi-Fi, Bluetooth and Internet access within the groups [36].
If an app is permission for a network resource (e.g., Bluetooth),
the app process is assigned to the corresponding network access
id. Thus, apart from UID, a process may be assigned one or
more group id (GIDs). Android app sandboxing is illustrated
in Fig. 4.

An app must contain a PKI certificate signed with the devel-
oper key (see Fig. 3). App signature is the point of trust between
Google and the third party developers to ensure the app integrity
and the developer reputation. App signing procedure places an

1002 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 2, SECOND QUARTER 2015

Fig. 4. Android Apps within Sandbox at Kernel-level [34].

app into an isolated sandbox assigning it a unique UID. If the
certificate of an app A matches with an already installed app B
on the device, Android assigns the same UID (i.e., sandbox) to
apps A and B, permitting them to share their private files and
the manifest defined permissions. This unintended sharing can
be exploited by the malware writers as naive developers may
generate two certificates. It is advisable for the developers to
keep their certificates private to avoid their misuse.

E. Permissions at Framework-Level

To restrict an app from accessing the sensitive functionality
such as telephony, network, contacts/SMS/sdcard and GPS
location, Android provides permission-based security model
in the application framework. Developer must declare the
permissions required using the 〈uses−permissions〉 tag in
AndroidManifest.xml as discussed before in the Listing 1 at
line number two, four and six respectively. Android controls
the individual apps to mitigate the undesirable effects on the
system apps or third party developer apps within the sandbox.
These restrictions are enforced on the process at the install
time. Android permissions are divided into the following four
protection-levels [37]:

1) Normal: These permissions have a minimal risk on the
user, system app or the device. Normal permissions are
granted by default at the install time.

2) Dangerous: These permissions fall within the high risk
group due their capability of accessing the private data and
important sensors of the device. A user must accept the
installation of dangerous permissions at the install time.

3) Signature: These permissions are granted only if the re-
questing app is signed with the same developer certificate
of the app that declared the permissions. They are granted
automatically at the install time. Signature permissions
are available with the system apps.

4) SignatureOrSystem: These permissions are granted if the
requesting app is signed with the same certificate as the
Android system image or with an app that declared this
permissions. They are granted automatically at installa-
tion time.

Android permissions are coarse-grained. For example, the
INTERNET permission does not have the capability to restrict

access to a particular Uniform Resource Locator (URL).
READ_PHONE_STATE allows an app to identify whether the
device rings or is on hold. At the same time it also allows the
app to read the sensitive information such as device identifiers.
Permissions such as WRITE_SETTINGS, CAMERA are broadly
defined, thus it violates the least privilege access principle.
Access to WRITE_CONTACTS or WRITE_SMS does not imply
the access to READ_CONTACTS or READ_SMS permissions. Thus
permissions are not hierarchical and they must be separately
requested by the developer. At the install time, the user is forced
to grant either all permissions or deny the app installation.
Hence the dangerous permissions cannot be avoided at the
install time. Moreover, the users cannot differentiate between
the necessity and its imperative misuse which may expose the
for exploitation [38].

F. Secure System Partition

Android system partition is built from the kernel, system
libraries, the android runtime, app framework and the apps
[34]. Android system partition are read-only to protect the
unauthorized access and/or modifications. Also, some part of
file-system such as application cache and sdcard are protected
with the appropriate privileges to prevent its tampering by the
adversary when the device is connected to the desktop through
the USB.

G. Secure Google Play Store

Google discourages the users to install apps to thwart any
third party market place app due to the security concern.
However, it still permits the installation from other third party
markets. Third party developer apps are made available from
the official playstore. Google vets the third party developer app
with Bouncer [6], a dynamic analysis sandboxed environment
to thwart any malware from entering the Google Play. Bouncer,
if not invincible is a reasonably effective security mechanism
[39]. Android has the facility of running a verification service
while installing apps from other market places. Google Play is
capable of remote un-install if it finds the malicious behavior
[40]. However, this facility is available for the devices con-
nected to the Internet.

FARUKI et al.: ANDROID SECURITY: A SURVEY OF ISSUES, MALWARE PENETRATION, AND DEFENSES 1003

III. ANDROID SECURITY ISSUES AND ENHANCEMENTS

This section gives a detailed description about the user and
device security issues. Moreover, it covers various enhance-
ments employed by the AOSP in subsequent Android versions.

A. Android Threats

AOSP is committed to a secure Android smartphone OS but,
it is also susceptible to the social-engineering attacks. Once
the app is installed, it may create undesirable consequences for
the device security. Following is the list of malicious activities
that have been reported or can be employed across subsequent
Android versions.

• Privilege escalation attacks were leveraged by exploiting
publicly available Android kernel vulnerabilities to gain
root access of the device [41]. Android exported compo-
nents can be exploited to gain access to the dangerous
permissions.

• Privacy leakage or personal-information theft occurs
when users grant dangerous permissions to malicious apps
and unknowingly allows access to sensitive data and ex-
filtrate them without user knowledge and/or consent.

• Malicious apps can also spy on the users by monitor-
ing the voice calls, SMS/MMS, bank mTANs, recording
audio/video without user knowledge or consent.

• Malicious apps can earn money by making calls or sub-
scribe to premium rate number SMSes without the user
knowledge or consent.

• Compromise the device to act as a Bot and remotely
control it through a server by sending various commands
to perform malicious activities.

• Aggressive ad campaigns may entice users to download
potentially unwanted apps (PUA’s), or malware apps [42].

• Colluding attack happens when a set of apps, signed with
same certificate, gets installed on a device. These apps
would share UID with each other, also any dangerous
permission(s) requested by one app will be shared by
the colluding malware. Collectively, these apps perform
malicious activities, whereas, their individual functionality
is benign. For example, an app with READ_SMS permis-
sion can read SMSes and ask the colluding partner with
INTERNET permission to ex-filtrate the sensitive informa-
tion to a remote server.

• Denial of Service (DoS) attack can happen when app(s)
overuses already limited CPU, memory, battery and band-
width resources and restrains the users executing normal
functions.

B. Version Update Issues

Android Open Source Project (AOSP), led by Google, up-
grades and maintains Android source-code. However, the patch,
an update or major upgrade distribution release remains the
responsibility of Original Equipment Manufacturers (OEMs)
or the wireless carriers. Individual OEM branches out updated
versions of the OS and customize them accordingly. In some
countries, the wireless carriers customize the OEM OS to suit

their own requirements. Such an update chain takes months
before the patch reach the end-users. This phenomenon is called
Fragmentation, where different versions of Android remain
scattered due to unavailability of updates. Specifically, handsets
with older and un-patched versions remain vulnerable to the
known exploits.

Android OS updates and upgrades are more frequent com-
pared to the desktop OS. Android has released 29 stable OS
version updates and upgrades since its launch in September
2008 [43]. Over The Air (OTA) update significantly changes
the existing version modifying the large number of files across
the platform, maintaining the integrity of existing user data and
apps [44]. New version update is facilitated through a service
called Package Management System (PMS). Xing et al. [44]
performed a comprehensive pileup vulnerabilities study which
in turn can be exploited by the malware authors during the
version upgrades. An app developed for the older version can
be exploited to use the dangerous permission(s) introduced in
the higher version release. During the update, Android does not
verify the appended permissions in the updated app [44]. Thus,
it compromises the device security. During a major update
or upgrade, large number of files are modified ensuring the
sensitive user information remains intact leading to complexity
in update procedures.

C. Native Code Execution

Android allows native code execution through libraries im-
plemented in C/C++ using Native Development Kit (NDK).
Even though native code executes outside Dalvik VM, it is
sandboxed through user-id/group-id(s) combination. However,
native code has the potential to perform privilege escalation
by exploiting platform vulnerabilities [23], [45]–[49], demon-
strated by quite a few malware attacks in the recent past [50].

D. Security Enhancements in the Recent Versions

In the view of security issues, vulnerabilities and/or reported
malware attacks, AOSP releases patches, updates, enhance-
ments and upgrades. Here, we discuss notable security fixes and
features incorporated in the subsequent Android OS versions up
to Android Kitkat 4.4:

1) Android prevented stack buffer and integer overflow in
the OS version 1.5. In version 2.3, Android fixed string
format vulnerabilities, and added hardware based No
eXecute (NX) support to stop execution of code in stack
and heap [34].

2) In Android 4.0 Address Space Layout Randomization
(ASLR) was added to prevent the return-to-libc and
memory related attacks [34].

3) Information can be ex-filtrated by connecting the de-
vice to a PC using the Android Debug Bridge (ADB)
driver. Though the ADB is developed as a debugging
tool, it permits app installation/install/un-install, reading
system partitions etc. even if the device is locked, but
connected to a Personal Computer (PC). To prevent such
unauthorized access, Android 4.2.2 authenticates an ADB
connection using RSA keypair [51]. User response is

1004 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 2, SECOND QUARTER 2015

prompted on the device screen if the ADB connection
accesses the device. Thus, if the device is locked, attacker
would not be able to gain the control.

4) To prevent the malware from silently sending premium-
rate SMS messages, Android 4.2 introduced an additional
notification feature to prompt the user before a user app
sends an SMS [52].

5) Android introduced a major capability addition to the ver-
sion 4.2 (API version 17) permitting creation of multiple
users (MU) to allow multiple users access a shared device
such as tablet [53]. Restricted profile (RP) access capabil-
ity was introduced added in Android 4.3 (API version 18)
in July 2013. These modifications were placed keeping in
mind the usage of sharable mobile devices such as tablets
to provide private space to multiple users on a single
mobile device. For each user, a separate account, user
selected apps, custom settings, private files and private
user data is assigned. This capability enables the multiple
users share a single device. In the MU scenario, main
account is the owner of the device. Using device settings,
owner can create additional MUs. Except the original
user, other created MU user cannot create, modify or
delete the device MU users.

6) Android 4.3 removed the setuid()/setgid() programs
[51] as they were vulnerable to the root exploits.

7) Android 4.3 experimented with SELinux to provide
the enhanced security [54]. Android 4.4 introduced
SELinux with enforcing mode for multiple root pro-
cesses. SELinux imposed Mandatory Access Control
(MAC) policies in place of the traditional Discretionary
Access Control (DAC). In DAC, the owner of the resource
decides which other interested subjects can access it,
where as in MAC the system (not the users) authorizes the
subject to access a particular resource. Thus, MAC has
the potential to prevent the malicious activity(s) even if
the root access of the device is compromised. Thus, MAC
substantially reduces the effect of kernel-level privilege
escalation attacks.

E. Third-Party Security Enhancements

Many independent Android security enhancements have
been proposed [55]–[58]. These mechanisms allow an organiza-
tion to create fine grained security policies for their employee
devices. Contextual information such as device location, app
permissions and inter-app communication can be monitored
and verified against the already declared policies. Scope of this
paper is to investigate Android security, malware issues and
defense techniques, it does not examine the above mentioned
prevention techniques in detail.

IV. REPORTED ANDROID MALWARE

THREAT PERCEPTION

Fig. 5 illustrates the time-line of some notable malware fam-
ilies of Android during 2010–2013. Among them, SMS Trojans
have major contribution; some of these have even infected
the Google Playstore [50]. A large number of malware apps

have exploited root-based attacks such as rage-against-the-
cage [23], gingerbreak [48] and z4root [45] to gain superuser
privileges to control the device. The most recent android exploit
is the master-key attack [59], which has the versions starting
from 1.6 to 4.2.2 vulnerable.

Each quarter, the anti-malware companies report an expo-
nential increase in the new families and existing malware
variants [3], [60]. These companies differ in the approximation
of the malware infection-rate on Android devices. In particular,
Lookout Inc. reported the global malware infection-rate like-
lihood percentage 2.61% for its users [61]. Two independent
researches estimated the real infection-rate. 1) In [62], the
authors used the smartphone Domain Name Resolution (DNS)
traffic in the United States and reported 0.0009% infection.
2) Truong et al. [63] instrumented the Carat app [64] to estimate
the infection-rates for three different malware datasets reporting
0.26% and 0.28% for McAfee and Mobile Sandbox dataset
respectively. Thus, the present Android threat perception and
malware infection rate has a huge reported variation between
the commercial anti-malware and independent studies.

In the following paragraph, we discuss the Android malware
classified and its characteristics.

A. Trojan

Trojans masquerade as benign apps, but they perform harm-
ful activities without consent or knowledge of the users. Trojans
leak the confidential user information, or they may “phish” the
user and steal the sensitive information such as passwords. Till
the second quarter of 2012, majority of the android variants
belonged to various SMS trojan families. SMS trojan apps are
capable of sending SMS to premium rate numbers without
the knowledge and/or consent of the user incurring financial
loss to the owner. Apart from that, such trojans also divulge
contacts, messages, IMEI/IMSI numbers to the command and
control domains. FakeNetflix [65] masquerades itself as popular
Netflix app, phishing the user to enter their login credentials.
Fakeplayer [42], Zsone [3] and Android.Foney [66] are a few
notable Android trojans incurring financial loss to the user.

On account of the increased mobile banking transactions,
malware authors have targeted the two-factor mobile bank-
ing authentication. After capturing the username and pass-
word of target accounts employing social engineering attacks,
Zitmo and Spitmo Trojans monitor and steal the mTANs (Mo-
bile Transaction Authentication Numbers) to silently complete
transactions [67].

B. Backdoor

Backdoor allows other malware to silently enter the system
facilitating them the bypass of the normal security procedures.
Backdoor can employ root exploits to gain the superuser privi-
lege and hide from the anti-malware scanners. A number of root
exploits such as rage-against-the-cage, rageagainstthecage and
gingerbreak [48] gain full-control of the device. Basebridge
[50], KMin [50], Obad [22] are notable example of the known
backdoors.

FARUKI et al.: ANDROID SECURITY: A SURVEY OF ISSUES, MALWARE PENETRATION, AND DEFENSES 1005

Fig. 5. Android Malware Family Chronology [2], [14]–[16], [18], [19].

C. Worm

Worm app can create an exact or similar copies of itself
and spreads them through network and/or removable media.
For example, Bluetooth worms can exploit bluetooth function-
ality and send copies to the paired devices. Android.Obad.OS
[22] is well known bluetooth worm.

D. Botnet

Botnet apps compromise the device to create a Bot, so that
the device is controlled by a remote server, called Bot-master,
through a series of commands. Network of such bots is called
a Botnet. Commands can be as simple as sending private

information to remote-server or as complex leading to denial
of service attacks. Bot can also include commands to download
malicious payloads automatically. Geinimi [50], Anserverbot
[50], Beanbot [50] are notable Android botnets.

E. Spyware

Spyware may present itself as a good utility, but has a hidden
agenda to surreptitiously monitor contacts, messages, location,
bank mTANs etc. that leads to undesirable consequences. It can
send the collected information to the remote server. Nickyspy
[50], GPSSpy [3] are known examples of spyware apps.

1006 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 2, SECOND QUARTER 2015

F. Aggressive Adware

Android provides coarse and fine grained location services.
Some advertisement affiliate networks misuse such location
services and send personalized advertisements to the user de-
vice to generate revenues. Aggressive adware can create short-
cuts on the home-screen, steal bookmarks, change the default
search engine settings and pushing unnecessary notifications
to hinder the effective device usage. Plankton [3] is a known
aggressive adware.

G. Ransomware

Ransomware can lock the user device to make it inaccessible
until some ransom amount is paid through online payment ser-
vice. For example, FakeDefender.B [68] masquerade as avast!
[69] anti-malware and displays the fake malware alerts to coax
the user install this hoax malware. In addition, it locks the
device and demands ransom to unlock the device.

V. MALWARE PENETRATION AND SURVIVAL TECHNIQUES

In this section, we summarize the malware penetration and
state of the art stealth techniques employed by the Android
malware apps.

A. Repackaging Popular Apps

Repackaging is a process of disassembling/decompiling the
popular free/paid apps from the popular market places, in-
sert, append the malware payload, re-assemble the trojan app
and distribute them via the less monitored local app-stores.
An app can be repackaged with the existing the reverse-
engineering tools. Repackaging process is illustrated in Fig. 6.
The following section discusses the main steps involved in app
repackaging:

• Download the popular free/paid app from the popular app-
store(s).

• Disassemble the app with a disassembler such as
apktool [70].

• Generate a malicious payload in dalvik bytecode or Java
and convert it to the bytecode using the dx [71] tool.

• Add the malware payload into benign app. Modify the
AndroidManifest.xml and/or resources if required.

• Assemble modified source again using apktool.
• Distribute repackaged app by self-signing with another

certificate to the less monitored third party app market.

Repackaging is one of the most common malware app gen-
eration technique. More than 80% samples from the Malware
Genome Dataset are repackaged malware variants [4] of the
legitimate official market apps. Repacking and repackaging
techniques can be used the generate large number of malware
variants. It can also be used to generate a number of unseen
variants of the already known malware. As the signature of each
malware variant varies, the commercial anti-malware detect
the unseen malware. Repackaging is a big threat as it can
pollute the app distribution market places and also hurts the
reputation of the third party developer. Malware authors can

divert advertisement revenues by replacing the advertisements
of the original developers.

AndroRAT APK Binder [72] repackages and generates a
trojanized version of a popular and legitimate equipping it with
the Remote Access functionality. Adversary can remotely force
the infected device to send SMS messages, make voice calls,
access the device location, record video and/or audio and access
the device files using the remote access service.

B. Drive-by Download

An attacker can employ social engineering, aggressive adver-
tisements and click a malicious URL, incite user to download
malware automatically. Optionally, a drive by download may
disguise a legitimate application and coax the user install an
app. Android/NotCompatible [25] is a notable drive-by down-
load app.

C. Dynamic Payload

An app can also embed malicious payload as an executable
apk/jar in encrypted or plain format within the APK re-
sources. Once installed, the app decrypts the payload. If the
payload is a jar file, malware loads DexClassLoader API
and execute dynamic code. However, it can coax the user
install the embedded apk by disguising as an important up-
date. The app can execute native binaries using Runtime.exec
API, an equivalent of Linux fork()/exec(). BaseBridge [50]
and Anserverbot [50] malware families employs the above
discussed technique. Some malware families does not embed
malicious payload as a resource, but rather download them from
the remote server and successfully evade detection. DroidKung-
FuUpdate [50] is a notable example of dynamically executing
payload. Such techniques go undetected with static analysis
methods.

D. Stealth Malware Techniques

Android OS is developed for resource constrained environ-
ment keeping in mind the availability of limited battery avail-
ability of the underlying smartphone. On device anti-malware
apps cannot perform the real-time deep analysis unlike their
desktop counterpart. Malware authors exploit these hardware
constraints limiting the anti-malware and obfuscate the mali-
cious payloads to thwart the commercial anti-malware. Stealth
techniques such as code encryption, key permutations, dynamic
loading, reflection code and native code execution remain a
matter of concern for signature-based anti-malware solutions.

Following the trends of the desktop platform, code obfus-
cation is also evolving on Android [73], [74]. Obfuscation
techniques are implemented for one or more of the following
purposes.

• To protect the proprietary algorithm from rivals by making
the reverse-engineering difficult.

• To protect Digital Rights Management of multimedia re-
sources to reduce piracy.

• Obfuscating the apps make them compact and thus faster
in execution.

FARUKI et al.: ANDROID SECURITY: A SURVEY OF ISSUES, MALWARE PENETRATION, AND DEFENSES 1007

Fig. 6. App Repackaging Process.

• To hide the already known malware from anti-malware
scanners to propagate and infect more devices.

• To prevent or at least delay human analysts and/or auto-
matic analysis engines from figuring out actual motive of
the unknown malware.

Dalvik bytecode is amenable to reverse-engineering due to
the availability of type safe information such as class/method
types, definitions, variables, registers literal strings and instruc-
tions. Code transformation methods can be easily implemented
on dalvik bytecode, optimize it with a code protection tool
such as Proguard [75]. Proguard is an optimization tool to re-
move the unused classes, methods and fields. Meaningful class/
method/fields/local-variable names are replaced with unread-
able code to harden the reverse engineering. Dexguard [76] is a
commercial Android code protection tool. It can be used to im-
plement code obfuscation techniques such as class encryption,
method merging, string encryption, control flow mangling etc.
to protect app from being reverse-engineered. Code transforma-
tion techniques can also be used to hinder the malware detection
approaches [73], [74]. Faruki et al. [77] proposed an automated
dalvik bytecode transformation framework to generate unseen
variants of already known malware with different bytecode ob-
fuscation techniques. In addition, they also evaluated the unseen
malware samples against the top commercial anti-malware and
static analysis techniques. The authors reported that, even trivial
transformation techniques can fail the existing commercial anti-
malware.

In the following, we cover various code transformation meth-
ods used to obfuscate the existing known malware and gener-
ate huge number of unseen malware signatures. In fact, code
transformation can also implemented to thwart the disassembly
tools [78].

1) Junk Code Insertion and Opcode Reordering: Junk code
or no-operation code (nop) insertion is a well-known technique
that changes the executable size and evades the anti-malware
signature database. Junk code insertion preserves the semantics
of the original app. However, it changes the opcode sequence

to alter the malware app signature. Opcode can be re-ordered
with the goto instructions in-between the functions and alter the
control flow, preserving the original execution semantics. These
methods can be used to evade the signature-based or opcode-
based detection solutions [73], [74].

2) Package, Class or Method Renaming: Android app is
uniquely identified with its unique package name. Dalvik byte-
code being type safe preserves the class and method names.
Many anti-malware use trivial signatures such as package, class
or method names of a known malware as detection signature
[79]. Such trivial transformations can be used to evade the anti-
malware signature based detection [74].

3) Altering Control-Flow: Some anti-malware use semantic
signatures such as control flow and/or data flow analysis to
detect the malware variants employing simple transformation
techniques [79]. Control flow of a program can be modified
with the goto instructions or by inserting and calling the junk
methods. Though trivial, such techniques evade the commercial
anti-malware [74].

4) String Encryption: Literal strings like messages, URLs
and shell-commands reveal a lot about the app. To prevent
such analysis, the plain text strings can be encrypted and made
unreadable. Also, each time the string encryption is executed,
various encryption methods (or keys) make it difficult to au-
tomate the decryption process. In that case, literal strings can
only be available during the code execution. Hence, it evades
the static analysis methods.

5) Class Encryption: Important information such as prod-
uct license-checks, paid downloads and DRM can be hidden
by encrypting the entire classes utilizing the above sensitive
information [76].

6) Resource Encryption: Content of resources folder, assets
and native libraries can be altered as unreadable, hence they
must be decrypted at runtime [76].

7) Using Reflection APIs: Static analysis methods search
sensitive Android API within the malware apps map the ma-
licious behavior. User apps permits Java reflection allowing

1008 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 2, SECOND QUARTER 2015

the creation of programmatic class instances and/or method
invocation using the literal strings. To identify the exact class
or method names, data-flow analysis can be implemented.
However, the literal strings can be encrypted, making it hard
to automatically search the reflection API. Such techniques can
easily evade static analysis approaches.

VI. APPROACHES FOR ASSESSMENT,
ANALYSIS, AND DETECTION

Android security solutions such as vulnerability assessment,
malware analysis and detection techniques are divided into:
1) Static; 2) Dynamic and 3) Hybrid. Static analysis methods
analyze code without actually running it, hence they are quick,
but they have to deal with false-positives. Dynamic analysis
techniques monitor the executed code and inspect its interaction
with the system. Though time-consuming they are effective
against malware obfuscation. Hybrid approaches leverage the
good of both the static and dynamic analysis methods.

Security solutions can be categorized as rule-based [80] or
feature extraction based machine-learning models [81]. Inap-
propriate feature selection can degrade the performance of
model, to generate false-positives (i.e., false detection of benign
apps as malware). Moreover, the number of features under the
problem must be small sized and effective as an on device
anti-malware solution. Feature reduction methods combined
with statistical measures such as mean, standard deviation, chi-
square, haar transforms can be used to identify the prominent
attributes responsible for malicious actions. Learning models
can be created by analyzing the features such as processor,
memory usage, battery consumption, system call invocation,
network activity etc. that can be used with the clustering or
classification algorithms to predict anomalous behavior.

A. Static Approach

Static analysis based approaches work by just disassembly,
decompilation without actually running it, hence does not infect
the device. This approach is undermined by the use of various
code transformation techniques discussed in this review in
Section V-D.

1) Signature-Based Malware Detection: The existing com-
mercial anti-malware use signature based malware detection
approaches. It extracts the interesting syntactic or semantic
patterns, features [82] and create a unique signature matching
that particular malware. Signature-based methods fails against
the unseen variants of already existing and known malware.
Moreover, the signature extraction process being manual, its
efficacy in the wake of exponential unique signature out-
break may leave the device vulnerable to malware attacks.
Faruki et al. [83] developed AndroSimilar, an automated robust
statistical feature signature based method to detect zero-day
variants of the already known malware.

2) Component-Based Analysis: In order to perform de-
tailed app-security assessment or analysis, an app can
be disassembled to extract the important content such as
AndroidManifest.xml, resources and bytecode. Manifest
stores important meta-data about such as list of the components
(i.e., activities, services, receivers etc.) and required permis-

sions. App-security and assessment solutions can analyze the
components using their definition and bytecode interaction to
identify the vulnerabilities [8], [84], [85].

3) Permission-Based Analysis: Requesting permission to
access a sensitive resource is the central design of Android
security model. No application by default has any permis-
sion that can affects user security. Identifying the dangerous
permission request is not sufficient to declare the malware
app, but nevertheless, permissions mapping requested and
used permissions is an important risk identification technique
[86], [87].

Sanz Borja et al. [38] used 〈uses−permission〉 and
〈uses−features〉 tags present in AndroidManifest.xml to
detect malware apps. Authors utilized machine learning algo-
rithms Naive Bayes, Random Forest, J48 and Bayes-Net on a
dataset of 249 malware and 357 benign apps. In [88] authors
mapped the requested and used permissions from the mani-
fest and their corresponding API in the dalvik bytecode. The
mapped attributes were used with the machine learning algo-
rithms on 125,249 malware and benign app dataset. Enck et al.
[89] developed a certification tool, Kirin to define a set of rules
to identify the combination of specific dangerous permissions to
identify malware attributes before installing the app on device.

4) Dalvik Bytecode Analysis: Dalvik bytecode is semanti-
cally rich containing type information such as classes, methods
and instructions. The type information can be utilized to verify
the app behavior. Detailed analysis based on control and data
flow gives an insight into the dangerous functionality such as
privacy leakage and telephony services misuse [30], [80], [90].
Control and data flow analysis are also useful to rebuild a
de-obfuscated bytecode, for example and nullify the effect of
trivial transformation techniques [91].

Bytecode control-flow analysis identifies the possible paths
that an application can take while it is executed. Dalvik byte-
code contains jump, branch and method invocation instructions
that alter execution order. To facilitate further analysis, an intra-
procedural (i.e., within a single method) or inter-procedural
(i.e., spanning across methods) control-flow bytecode graph
(CFG) is generated. Karlsen et al. [91] formalized the Dalvik
bytecode to perform the control-flow analysis based semantic
signatures to detect malware apps.

Bytecode data-flow analysis predicts the possible set of
values during the different point of execution. CFG can be
used to traverse the possible execution paths to determine the
control and data dependency. Data-flow analysis is performed
within methods (intra-procedural) or between different methods
(inter-procedural level) to improve the approximation of the
desired output. In particular, special data-flow analysis also
known as “constant propagation” is implemented to identify the
constant arguments of sensitive API calls invoked during the
app execution. For example, a malware app sending premium
rate SMS to a pre-defined hard coded number can be detected
with the constant propagation data-flow analysis [80]. Taint
analysis another type of data-flow analysis method to identify
the colored variables holding the sensitive information. For ex-
ample, taint analysis can identify privacy leakage which can be
used to steal the sensitive user information apps [90]. Sensitive
API-call tracking within the bytecode can be useful to identify

FARUKI et al.: ANDROID SECURITY: A SURVEY OF ISSUES, MALWARE PENETRATION, AND DEFENSES 1009

malicious behavior [92]. It is also helpful in identifying the app
clones [93]. Zhou et al. [4] utilized the sequence of opcodes
in the Dalvik bytecode instructions to identify the repackaged
malware apps.

5) Re-Targeting Dalvik Bytecode to Java Bytecode: Avail-
ability of number of Java decompilers [94]–[96] and static
analysis tools based on [97]–[99], has motivated the re-
searchers to re-target the Dalvik bytecode to the Java bytecode.
Enck et al. [100] developed the ded tool that is used to convert
Dalvik bytecode to Java source. Later, they performed static
analysis control-flow, data-flow, on the Java code using Fortify
SCA [99] framework. In [101] authors developed Dare tool
to convert the Dalvik bytecode to Java bytecode with 99%
accuracy. Bartel et al. [102] developed the Dexpler plugin
for static analysis framework, Soot [97]. Dexpler converts the
Dalvik bytecode into Soot’s internal Jimple code. However, it
is unable to handle the optimized dex (odex) files. Gibler et al.
[103] employed ded and dex2jar [104] to convert the Dalvik
bytecode into Java bytecode and source code respectively.
Authors implemented static analysis WALA [98] framework to
identify the privacy leakage within Android apps on a fairly big
dataset.

B. Dynamic Approach

Static analysis and detection approaches are quick, they
fail against the encrypted, polymorphic and code transformed
malware. Dynamic analysis methods execute the app in a
protected environment, providing all the emulated resources
it needs, thereby learning its interaction identify malicious
activities. Some dynamic analysis methods have been imple-
mented, but the resource constraints of a smartphone limits
such execution methods. Android app execution being event
based with asynchronous multiple entry points, it is important
to trigger those events. User Interface (UI) gestures such as
tap, pinch, swipe, keyboard and back/menu key press must be
automatically triggered to initiate the app interaction with the
device. Android SDK comes is equipped with the monkey [105]
tool, to automate some of the above gestures discussed above.
In order to perform an in-depth monitoring, one may need to
modify the framework by inserting the tracking code known as
Instrumentation.

A serious drawback of dynamic approach is that some mali-
cious execution path may get missed, if it is triggered according
to some non-trivial event. For example, at a particular time of
the day the malware functionality is executed, but that event
is never executed. Anti-emulation techniques such as Sandbox
[39], [106] detection, timing out the analysis environment,
delaying the malware execution can evade the dynamic analysis
methods. Dynamic approaches are divided into the following
three categories.

1) Profile-Based Anomaly Detection: Malicious apps may
create Denial of Service (DoS) attacks by over utilizing the
constrained hardware resources. Range of parameters such
as CPU usage, memory utilization statistics, network traffic
pattern, battery usage and system-calls for benign and malware
apps are collected from the Android subsystem. Automatic

analysis techniques along with machine learning methods are
used to distinguish the abnormal behavior [81], [107], [108].

2) Malicious Behavior Detection: Specific malicious be-
haviors like sensitive data leakage, sending SMS/emails, voice
calls without user consent can be accurately detected by moni-
toring the particular features of interest [109]–[112].

3) Virtual Machine Introspection: The downside of app be-
havior monitoring from an emulator (VM) is, an emulator
itself is susceptible against the malicious app which defeats
the analysis purpose. To counter this, Virtual Machine Intro-
spection approaches can be employed to detect app behavior by
observing the activities out of the emulator [113].

VII. DEPLOYMENT FOR ASSESSMENT, ANALYSIS,
AND DETECTION APPROACHES

Security assessment, malware analysis and detection meth-
ods can be deployed at different places, depending on the re-
quirement, from on-device solution to a completely off-device
or cloud base techniques.

A. On-Device

Signature-based malware is simple and efficient. The de-
tailed assessment and analysis remains constrained on a mo-
bile as compared to the desktop anti-malware analysis. Thus,
lightweight risk assessment solutions can be proposed by ana-
lyzing the components and permissions as an on device solution
[89]. Following are some on device anti-malware limitations.

• Anti-malware apps run as a normal app without any spe-
cial privileges. As a result, they are also under the purview
of process isolation. Hence, they cannot directly scan other
app memory, files read/written and private files during the
app scanning.

• Android permits execution of background app services.
However, it can stop anti-malware app services if it runs
out of hardware resources. Similar privileged apps can
force stop an anti-malware app execution with appropriate
privileges.

• Without acquiring the root privileges, anti-malware app
cannot create system hooks to monitor the file-system or
perform network access.

• Without acquiring root privileges, anti-malware app can-
not uninstall any other app. It has to depend upon the user
for removing the app.

B. Distributed (Some Part On-Device, Some Part Off-Device)

On the fly analysis and/or detection can be performed on
the device, detailed and computationally expensive analysis
can be performed at remote server to make anti-malware app
limited-resource friendly. In the case of profile-based anomaly
detection, resource usage parameters are be collected at the
client-side and sent back to the remote server for detailed analy-
sis. The results can be finally sent back to the device [81], [110].
However, continuous availability of the Internet bandwidth and
associated cost is a concern. In case of unavailability of network

1010 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 2, SECOND QUARTER 2015

resources host-based detection approach can protect the device
from malware attack [108].

C. Off-Device

It is important to automate the deep static analysis of a
new malware sample to enable the human analysts take quick
decision to identify and mitigate the malware. Such automated
deep analysis solutions need computational power and memory.
Due to this, they are usually deployed off-device [30], [80],
[90], [113].

VIII. STATE-OF-THE-ART TOOLS & TECHNIQUES FOR

ANDROID APP ASSESSMENT, ANALYSIS, AND DETECTION

Industry and academia have proposed several solutions for
Android malware analysis and detection. In this section, we sur-
vey and examine promising reverse-engineering tools and de-
tection approaches. Detection approaches have been classified
according to the following: 1) Goal, which can be app-security
assessment, analysis and/or malwaredetection; 2) Methodology
as discussed in Section VI; and 3) Deployment discussed
in Section VII.

A. Reverse-Engineering Tools

Content of Android package (APK) is stored in the binary
format. Before assessment, analysis or detection task initiates,
it is important to disassemble it for further processing. There are
a number of tools to disassemble and/or decompile the Android
app. In the following section, we discuss some known reverse-
engineering tools considering their strengths.

1) apktool [70] can decode binary content of an APK into
nearly original form in project-like directory structure.
It disassembles the binary resources and converts byte-
code within classes.dex into the smali [114] bytecode
for easier reading and manipulation. After making the
changes, it can also repackage it back into an APK. This
tool is one of the best open source reverse-engineering
tool.

2) dex2jar [104] is a disassembler to parse both the .dex
and optimized dex file, providing a light-weight API to
access it. dex2jar can also convert dex to a jar file, by
re-targeting the Dalvik bytecode into Java bytecode, for
further manipulation. Moreover, it can also re-assemble
the jar into a .dex after the modifications.

3) Dare [115] project aims at re-targeting Dalvik bytecode
within classes.dex to traditional .class files using
strong type inference algorithm. This .class files can
be further analyzed using a range of traditional tech-
niques developed for Java applications, including the de-
compilers. Octeau et al. [101] demonstrated that Dare is
40% more accurate than dex2jar.

4) Dedexer [116] disassembles the classes.dex into
Jasmin-like syntax and creates a separate file for each
class maintaining the package directory structure for easy
reading and manipulation. However, unlike the apktool, it

Fig. 7. Features of Androguard.

cannot re-assemble the dis-assembled intermediate class
files.

5) JEB [117] is a leading professional Android reverse-
engineering software available on Windows, Linux and
Macintosh platforms. It is a GUI-based interactive de-
compiler to analyze the reversed malware app content.
App information such as manifest, resources, certificates,
literal strings can be examined in Java source by provid-
ing an easy navigation through the cross-references. JEB
converts the Dalvik bytecode directly into Java source by
utilizing dalvik bytecode semantics. Exceptionally, JEB
can also de-obfuscate Dalvik bytecode to make disassem-
bled code more readable in comparison to its counterparts
[70], [104]. JEB supports Python scripts or plugins by
allowing access to the decompiled Java code Abstract
Syntax Tree (AST) through API. This feature is helpful
in automating the custom analysis. According to us, it is
the best reverse-engineering tool so far.

B. Androguard

Goal: Risk Assessment, Analysis and Detection
Methodology: Static
Deployment: Off-Device
Illustrated in Fig. 7, Androguard [79] an open-source, static

analysis tool can reverse engineer to disassemble and decom-
pile Android apps. It generates the control flow graphs for
each method and provides access through Python-API on the
command line and graphic interface. Androguard Normalized
Compression Distance (NCD) approach finds similarities and
differences of two suspected clones reliably, which is also
helpful to detect repackaged apps. It provides python APIs to
access the disassembled resources and static analysis structures
like basic-blocks, control-flow and instructions of an APK. An
analyst can develop his own static analysis framework using
the python APIs. Following are some of the features explained
below.

1) App Code Similarity: Androguard finds similarities be-
tween two apps by calculating Normalized Compression
Distance between each method pairs and calculates a simi-
larity score between 0–100, where 100 means identical apps.
It displays IDENTICAL, SIMILAR, NEW, DELETED and
SKIPPED methods of the two suspected clones. In the same
way, it displays differences between two methods by comparing
each basic blocks pairs. More specifically, to calculate differ-
ences between two similar methods, it first converts each unique
instruction in basic block into a string. Then, it applies Longest

FARUKI et al.: ANDROID SECURITY: A SURVEY OF ISSUES, MALWARE PENETRATION, AND DEFENSES 1011

Fig. 8. Architecture of Andromaly.

Common Subsequence algorithm on these strings of two basic
blocks to find differences between them [118].

2) Risk Indicator: Risk Indicator calculates fuzzy risk score
of an APK from 0 (low risk) to 100 (high risk). It considers
following parameters:

• Native, Reflection, Cryptographic and Dynamic code pres-
ence in an app.

• Number of executables/shared-libraries present in an app.
• Permission requests related to privacy and monetary risks.
• Other Dangerous/SystemOrSignature/Signature permis-

sion requests.
3) Signature of Malicious Apps: Androguard manages a

database of signatures and provides an interface to add/remove
signatures to/from the database. Signature is described in the
JSON format. It contains a name (or family-name), set of
sub-signatures and a Boolean formula to mix different sub-
signatures. Following are the two types of sub-signatures:

• METHSIM: It contains three parameters, CN—class
name, MN—method name and D—descriptor.

• CLASSSIM: It contains a single parameter, CN—class
name.

Thus sub-signature can be applied on a specific method
or entire class. Different sub-signatures can be mixed with
Boolean formula (BF).

C. Andromaly

Goal: Anomaly Detection
Methodology: Dynamic
Deployment: Half On-Device, Half Off-Device
In [81], Shabtai et al. have proposed a light-weight Android

malware detection system based on machine learning approach.
It performs real-time monitoring for collection of various
system metrics, such as CPU usage, amount of data trans-

ferred through network, number of active processes and battery
usage.

As shown in Fig. 8, Andromaly has four major components:

• Feature Extractors: They collect feature metrics, by
communicating with Android kernel and application
framework. Feature Extractors are triggered at regular
intervals to collect new feature measurements by the fea-
ture manager. Feature Manager may also perform some
pre-processing on the raw feature data.

• Processor: It is an analysis and detection unit. It re-
ceives the feature vectors from Main Service, analyze
them and perform threat assessment and pass it on to
Threat Weighting Unit (TWU). Processors can be rule-
based, knowledge-based classifiers or anomaly detectors
employing machine learning methods. TWU applies en-
semble algorithm on the analysis results received from
all the processors to derive a final decision on the device
infection. Alert Manager smoothes the results to reduce
the false alarms.

• Main Service: It coordinates feature collection, malware
detection and alert process. It is responsible for requesting
new feature measurements, sending new feature metrics to
the processors and receives final recommendations from
the alert manager. Loggers can log information for de-
bugging, calibration and experimentation. Configuration
Manager manages the configuration of an application,
for example, active processors, alert threshold, sampling
interval etc. The task of activating or deactivating proces-
sors is taken care by Processor Manager. Operation Mode
Manager switches application from one mode to another
that results in the activation/deactivation of processors
and feature extractors. This change in operation modes is
resulted due to change in resource levels.

1012 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 2, SECOND QUARTER 2015

Fig. 9. AndroSimilar Methodology.

• Graphical User Interface: It interacts with the user to
configure application parameters, activate/deactivate the
application, alerts user regarding threats and allows ex-
ploring collected data. Experiments were carried out using
few categories of artificial malware, thus working model
needs testing by real malware.

D. AndroSimilar

Goal: Malware Detection
Methodology: Static
Deployment: Off-Device (Portable to On-Device too)
In [83] authors proposed AndroSimilar, an automatic signa-

ture generation approach that extracts statistically rare syntactic
features for malware detection. Apart from existing malware,
AndroSimilar is able to reasonably detect obfuscated malware
with techniques like string encryption, method renaming, junk
method insertion and changing control flow, widely used to
evade fixed anti-malware signature, thus it can detect unknown
variants of existing malware. AndroSimilar approach is based
on Similarity Digest Hash (SDHash) [119] used in digital
forensics to identify similar documents.

Intuitively, completely unrelated apps should have lower
probability of having common features. When two unrelated
apps share some features, such features should be considered
weak as using these shall lead to false positives [120]. Fixed-
size byte-sequence features are extracted based on empirical
probability of occurrence of their entropy values, then popu-
lar features are searched among them according to rarity in
neighborhood [119]. Fig. 9 shows the working of AndroSimilar.
Following are the steps involved:

• Submit Google Play, third-party or an obfuscated mali-
cious app as input to AndroSimilar.

• Generate entropy values for every byte-sequence of fixed
size in a file and normalize these in range of [0, 1000].

• Select statistically robust features according to similarity
digest scheme as representative of the app.

• Store extracted features into Bloom Filters. Sequence of
Bloom Filters is a signature of an app.

• Compare the signature with the database to detect match
with known malware family. If similarity score is beyond

a given threshold, mark it as malicious (or repackaged)
sample.

Thus, they generate signatures of known malware families as
a representative database. If similarity score of an unknown app
with any existing family signatures matches beyond a threshold,
then it is labeled as malicious. We believe AndroSimilar is a
promising approach to detect unseen malware variants.

E. Andrubis

Goal: Malware Analysis and Detection
Methodology: Static and Dynamic
Deployment: Off-Device
Andrubis [121] is a web-based malware analysis platform,

built upon some well-known existing tools Droidbox [122],
TaintDroid [109], apktool [70] and Androguard [79]. Users
can submit suspicious apps through the web based interface.
After analyzing the app at the remote-server, Andrubis re-
turns detailed static and dynamic analysis reports as a web
page. Andrubis also provides app behavior rating between
0–10, where 0 indicates benign and 10 specifies malicious
rating.

To study the Andrubis functionality, a custom SMS based
botnet was uploaded on the Andrubis web service. This re-
search prototype rated custom SMS bot with a score 9.9/10.
However, none of the commercial anti-malware on the virusto-
tal portal were able to detect this unseen malware. This demon-
strates the effectiveness of Andrubis behavior rating against the
zero day malware. However, Vidas et al. [106] demonstrated
that Andrubis virtual environment is detected with anti-analysis
techniques and identified the analysis sandbox.

F. APKInspector

Goal: Malware Analysis
Methodology: Static
Deployment: Off-Device
APKInspector [123] is a full-fledged Android static analysis

tool, consisting Ded [124], smali/baksmali [114], apktool [70]
and Androguard [79]. It provides a rich GUI and has following
features:

• App meta-data
• Analysis of sensitive permissions

FARUKI et al.: ANDROID SECURITY: A SURVEY OF ISSUES, MALWARE PENETRATION, AND DEFENSES 1013

• Displays Dalvik bytecode and Java source code
• Displays control-flow graph
• Displays call-graph, displaying call-in and call-out struc-

tures
• Static instrumentation support by allowing modification to

the smali code

G. Aurasium

Goal: Analysis and Detection
Methodology: Dynamic
Deployment: On-Device
Aurasium [125] is a powerful technique that takes control of

execution of apps, by enforcing arbitrary runtime security poli-
cies. To be able to do that, Aurasium repackages the Android
apps with the policy enforcement module. Aurasium Security
Manager component can apply policies on the individual and
multiple apps. Any security and privacy violations are reported
to the user. Thus, it eliminates the need for manipulating
Android OS to monitor app behavior. It intervenes in-case of
application accessing sensitive information such as contacts,
messages, phone identifiers and executing shell-commands by
asking user for confirmation regarding the same.

Aurasium is limited by the fact that it succumbs to the stealth
malware, i.e., it can be detected by apps based on signature
modification and presence of predefined native library. Malware
app may not reveal its malicious behavior if it identifies the
presence of Aurasium, hence avoids the detection. As Aura-
sium depends on repackaging, it may fail to disassemble (or
assemble) an code transformed app.

H. Bouncer

Goal: Malware Detection
Methodology: Dynamic
Deployment: Off-Device
Google protects its own app-store, Google Play, with a

system called Bouncer. It is a virtual machine based dynamic
analysis platform to test the uploaded third party developer
apps, before availing them to the users for download. It executes
app to look for any malicious behavior and also compares it
against previously analyzed malicious apps. Though no docu-
mentation of internal functioning is available, Oberheide et al.
[39] presented their analysis of Bouncer environment by im-
plementing a custom command and control app. Dynamic code
loading techniques can evade the Bouncer [126] scrutiny.

I. CopperDroid

Goal: Malware Analysis and Detection
Methodology: Dynamic
Deployment: Off-Device
Reina et al. proposed CopperDroid [107], a system which

performs system call-centric dynamic analysis of Android apps,
using Virtual Machine Introspection. To address the path cov-
erage problem, they have supported the stimulation of events
as per the specification present in app manifest file. Authors
have shown through experimentation that system call-centric

Fig. 10. Crowdroid Architecture.

Fig. 11. Features of Droidbox.

analysis can effectively detect malicious behavior. They have
also provided a web interface for other users to analyze apps
[127]. However, Vidas et al. [106] demonstrate the identi-
fication of CopperDroid’s virtual environment by employing
advanced anti-analysis techniques.

J. Crowdroid

Goal: Malware Detection
Methodology: Dynamic
Deployment: Half On-Device, Half Off-Device
Crowdroid [110] is a behavior based malware detection

system (see Fig. 10). It has two components, a crowd sourcing
app which need to be installed on user-devices and a remote-
server for malware detection. The crowd sourcing app sends
the behavioral data (i.e., system-call details) in the form of
an application log file to the remote server. Strace, a system
utility present on device is used to collect the system-call details
of the apps. The application log file consists of basic device
information, list of installed applications and behavioral data.
At the remote-server, this data is processed to create feature
vectors which could then be analyzed by 2-means partition
clustering to predict the app as either benign or malicious. An
app report is generated and stored in the database of the remote
server.

1014 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 2, SECOND QUARTER 2015

Fig. 12. DroidMOSS Methodology.

Fig. 13. Working of Drozer.

Results of Crowdroid are accurate for self-written malware
and promising for some of the real malware. If the malware is
very active, then it is possible to have large difference in system
calls, which can help in detection for the same. But, it also
suffers with false-positives, as demonstrated by authors using
Monkey Jump2, an app with HongTouTou malware.

Limitation of Crowdroid is, the crowd sourcing app must
always be available for monitoring, which can drain the avail-
able device resources. Also, this technique is yet to be tested
on the known malware families available to ascertain its
effectiveness.

K. Droidbox

Goal: Taint Analysis and Monitoring
Methodology: Dynamic
Deployment: Off-Device
Droidbox [122] as illustrated in Fig. 11 is a dynamic analysis

tool developed on top of TaintDroid [109]. It modifies the
Android framework for API call analysis. Fig. 11 displays the
static and dynamic analysis operations of the Droidbox. App
analysis begins with the static-pre-checking, which includes
parsing permissions, activities and receivers. The app under
analysis is executed in emulated environment to perform taint-
analysis and API monitoring. Taint-analysis involves labeling
(tainting) private and sensitive data that propagates through the
program variables, files and interprocess communication.

Taint-analysis keeps track of tainted data that leaves the sys-
tem either through network, file(s) or SMS and the transmitting

app is responsible for ex-filtration. API monitoring involves
API logging with its parameters and return values. The results
consists the following parameters:

• App hash values
• Network data transferred or received
• File read and write operations
• Data leaks
• Circumvented permissions
• Broadcast receivers
• Services started and classes loaded through
DexClassLoader

• SMS sent and dialed calls
• Cryptographic operations implemented with Android API
• Temporal operations order
• Tree-map for similarity analysis
Limitation: Droidbox can only monitors the tasks performed

within the Android Framework. If the native code leaks the
sensitive data, existing system cannot detect and hence the data
is ex-filtrated without user knowledge.

L. DroidMOSS

Goal: Repackaged App Detection
Methodology: Static
Deployment: Off-Device
DroidMOSS [4] is an app repackaging detection prototype

employing semantic file similarity measures. More specifically,
it extracts the DEX opcode sequence of an app and generates
a signature fuzzy hashing [128] signature from the opcode.

FARUKI et al.: ANDROID SECURITY: A SURVEY OF ISSUES, MALWARE PENETRATION, AND DEFENSES 1015

It also adds developer certificate information, mapped into a
unique 32-bit identifier in the signature. Suspected app features
are verified against the original apps using the edit-distance
algorithm to identify the similarity score. Proposed approach
is discussed and illustrated in Fig. 12.

Intuition behind DroidMOSS using the opcodes feature is, it
might be easy for adversaries to modify operands, but very hard
to change the actual opcodes [4]. This approach has several dis-
advantages. First, it only considers DEX bytecode, ignoring the
native code and app resources. Second, the opcode sequence do
not consist high level semantic information and hence generates
false negatives. Smart adversary can easily evade this technique
using code transformation techniques such as inserting junk
bytecode, restructure methods and alter control flow to evade
the DroidMOSS prototype.

M. DroidScope

Goal: Analysis
Methodology: Dynamic
Deployment: Off-Device
DroidScope [113] is a Virtual Machine Introspection (VMI)

based dynamic analysis Android framework. Unlike other dy-
namic analysis platforms, it stays out of the emulator and mon-
itors the OS and Dalvik semantics. Hence, even the privilege
escalation attacks on the Android kernel can be detected. It
also makes the attackers task of disrupting analysis difficult.
DroidScope is built upon QEMU emulator with a rich set of
APIs to customize the malware analysis prototype. Android
malware families DroidKungFu and DroidDream were ana-
lyzed and detected with this technique. However, DroidScope’s
effectiveness against other malware families remains to be
tested.

N. Drozer

Goal: Risk Assessment using Exploitation
Methodology: Static and Dynamic
Deployment: Half On-Device, Half Off-Device
Drozer [129] is a comprehensive attack and security as-

sessment framework for Android devices, available as an
open-source and a professional version. It allows secu-
rity enforcement agencies to remotely exploit Android de-
vices to identify vulnerabilities and threats in Android OS.
Fig. 13 displays the Drozer functionality. Following is the list
of features supported by the Drozer:

• It installs an Agent app on the devices which executes
exploitation modules using Java Reflection API. At server-
side, one can create their own custom modules in Python
and send it to Agent app to perform exploitation activities
on the devices.

• It can interact with the Dalvik VM to discover installed
packages and related app components. It also allows
interaction with the app-components like services, content
providers and broadcast receivers to identify vulnerabilities.

• It can create a shell to remotely interact with Android OS.
• It is capable of generating known exploits taking advan-

tage of the already known rooting vulnerabilities.

Fig. 14. Taint propagation in TaintDroid.

O. Kirin

Goal: Risk Assessment
Methodology: Static
Deployment: On-Device
In [89] authors proposed a security policy enforcement

mechanism, Kirin, an on device app vetting framework. Kirin
defines a set of rules based on the combination of certain
dangerous permissions requested by the app. If an app fails
to satisfy the Kirin security rules, the installation is prevented.
Thus, the proposed approach decides based on set of rules, on
the user behalf.

P. TaintDroid

Goal: Taint Analysis
Methodology: Dynamic and Android Instrumentation
Deployment: Off-Device
TaintDroid [109] extends the Android platform to track the

privacy sensitive information leakage in the third-party devel-
oper apps. The sensitive data is automatically tainted (or la-
beled) in order to keep track whether the labeled data leaves the
device. When the sensitive data leaves the system, TaintDroid
records the label of the particular data and the app which sent
the data along with its destination address.

Taint propagation is tracked at four levels of granular-
ity, 1) Variable-level, 2) Method-level, 3) Message-level and
4) File-level. Variable-level tracking uses variable semantics,
which provides necessary context to avoid taint propagation. In
message-level tracking, the taint on messages is tracked to avoid
IPC overhead. Method-level tracking is used for Android native
libraries that are not directly accessible to apps but through
modified firmware. Lastly file-level tracking ensures integrity
of file-access activities by checking whether taint markings are
retained.

Let us consider the working of TaintDroid where data of
one trusted app is accessed by some untrusted app and sent
over the network. The above scenario is displayed in Fig. 14.
First, the information of the trusted app is labeled according
to its context. A native method interfaces with the Dalvik VM
interpreter to store the taint markings in a virtual taint map.

1016 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 2, SECOND QUARTER 2015

TABLE I
SUMMARY OF ASSESSMENT, ANALYSIS AND DETECTION TOOLS FOR ANDROID PLATFORM ACCORDING

TO THEIR GOAL, METHODOLOGY AND DEPLOYMENT. ∗ INDICATES WEB-BASED INTERFACE

Every interpreter simultaneously propagates the taint tags ac-
cording to data-flow rules. The Binder library of the TaintDroid
is modified to ensure the tainted data of the trusted application
is sent as a parcel having a taint tag reflecting the combined
taint markings of all contained data. The kernel transfers this
parcel transparently to reach the Binder library instance at the
untrusted app. The taint tag is retrieved from the parcel and
marked to all the contained data by the Binder library instance.
Dalvik bytecode interpreter forwards these taint tags along with
requested data towards untrusted app component. When that
app calls taint sink (for example, network) library, it retrieves
taint tag and marks that activity as malicious.

Q. Other Promising Techniques

Third party app developers earn revenues on free apps by
using the in-app advertisement libraries. A number of adver-
tisement agencies provides the advertisement libraries to the
app developers for inclusion in apps to earn revenues with

targeted advertising. AdRisk [130] detected a few aggressive ad
libraries performing targeted advertisements at the cost of the
user privacy. There have been instances of ad-affiliate networks
getting classified as suspicious due to either targeted adver-
tisement inclusions or sending malicious advertisement and
compromise the user security [3]. Thus, it is equally important
to detect such ad libraries within an app to make an informed
decision. AdDetect [131] is a promising semantic approach
that detects the presence of in-app ad-library with reasonable
accuracy compared to existing approaches.

Damopoulos et al. [108] proposed a combination of host and
cloud based Intrusion Detection System (IDS). In particular,
authors highlight the importance of such a system to protect
the smartphone when the network resource availability is low,
in such case it performs the host based detection. In the
device battery is drained, the prototype intelligently opts for
the cloud-based detection to leverage the infinite processing
and memory. In [132], authors propose an indoor navigation
for the visually impaired people in various lighting conditions.

FARUKI et al.: ANDROID SECURITY: A SURVEY OF ISSUES, MALWARE PENETRATION, AND DEFENSES 1017

TABLE II
SUMMARY OF WEB BASED ANDROID MALWARE ANALYSIS INTERFACES EMPLOYING DYNAMIC OR A HYBRID ASSESSMENT APPROACH

Proposed prototype PERCEPT-V, a smartphone based UI em-
ploys visual tags with a sampling algorithm with different
environments, lighting, ambience and usage angles.

Vidas et al. [106] proposed a system to identify the emu-
lated Android environment based on differences in behavior,
performance evaluation, presence/absence of smartphone hard-
ware and functionality based software capabilities. Such a sys-
tem highlights the importance of employing anti anti-analysis
techniques among the sandbox environment. Faruki et al.
[133] proposed a platform-neutral anti anti-emulation sandbox
to detect the stealth Android malware. Authors also propose
a machine learning model to predict the resource hoggers.
Moreover, in [134], the authors proposed a novel solution based
on a behavior-triggering stochastic model to detect the target,
and advanced malware.

SMS Trojans capable of sending messages to premium-
rate numbers are growing to maximize monetary benefits.
Elish et al. [111] devised a static anomaly detection method
to identify illegitimate data dependency between arguments of
user input call-backs to sensitive functions. Using this approach

they demonstrated the detection of some Android malware that
send messages without user knowledge or consent. However,
their approach does not take into account asynchronous APIs in
Android such as inter-component communication, which fails
to detect sophisticated SMS Trojans such as Dendroid [135].
AsDroid [112] is an another interesting static analysis tool that
detects stealth behavior by finding semantic mismatch between
the user-interface texts and their corresponding use of sensitive
features.

Portokalidis et al. [53] proposed an alternative off-device
malware detection approach by cloning smartphone state at re-
mote server. The remote server can have high computing power,
more memory and an uninterrupted power supply to execute
multiple detection techniques in parallel. The proposed proto-
type is scalable, practical and incurs a low network overhead. In
[136], authors proposed a comparison framework for different
dynamic analysis sandbox to identify the limitations among
the known web based automatic malware analysis frame-
works. Authors concluded that the existing sandbox approaches
fail against the advanced and targeted malware. However,

1018 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 2, SECOND QUARTER 2015

Fig. 15. A Proposed Hybrid Approach for Android Malware Analysis, malware app detection.

Faruki et al. [133] proposed a transparent, scalable and An-
droid version invariant sandbox to detect the advanced Android
threats.

Rattazi et al. [137] proposed a systematic approach that iden-
tifies the critical places where access controls are not present or
do not properly identify the subject and object of a decision.
Authors performed specific experiments to test their hypothesis
and concluded that the newer capabilities still need to mature to
be used as a sharing environments on mobile Internet devices.

Petsas et al. [138] demonstrate advanced malware apps
thwarting virtual/emulated environment to hinder dynamic
analysis. Authors patched existing malware apps with anti-
analysis features to demonstrate the weakness of majority of
existing frameworks already discussed in [127], [139]–[143].
However, Faruki et al. proposed an Android platform invariant
Android Sandbox to uncover advanced malware failing the
existing web based analysis sandbox discussed above.

R. Comparison of Web Based Analysis Sandbox

Here, we discuss Sandbox prototypes implemented and
available as web service to aid a human analyst keep pace
with an exponential increase in Android malware. Andrubis
and Copperdroid are implemented on top of Taintdroid and
Droidbox, a privacy leakage detection approach and dynamic
analysis technique respectively. Table II compares various web
based sandbox approaches used by researchers to test and
automate malware analysis. Mobile Sandbox is an automated
malware analysis and detection approach incorporating native
code analysis, a facility not available with the existing proto-
types. Droidanalyst is an anti anti-analysis sandbox to detect
environment reactive malware. Apps are classified as resource
hoggers based on the data transmitted/received. The approaches
using Taintdroid or Droidbox have to modify Android version,
whereas DroidAnalyst is an android platform neutral sandbox.

IX. CONCLUSION AND DISCUSSION

Android is a core delivery platform providing ubiquitous
services for connected smartphone paradigm, thus monetary

gains have prompted malware authors to employ various attack
vectors to target Android. Due to large increase in unique mal-
ware app signature(s) and limited capabilities within Android
environment, signature based methods are not sufficient against
unseen, cryptographic and transformed code. Researchers have
proposed various behavioral approaches to guard the central-
ized app markets as malware authors are targeting easy-to-
reach-user online distribution mechanism. In this survey, we
discussed Android security architecture and its issues, malware
penetration and stealth techniques. In Section VI we discussed
static and dynamic approach for malware analysis and detec-
tion. Both approaches can be used separately, but each one
has its own limitations. Static analysis can be thwarted by em-
ploying encryption and/or transformation techniques discussed
in Section V-D. Dynamic analysis can be evaded by several
anti-emulation techniques covered in Section VI-B. We also
covered prominent malware analysis and detection approaches
as summarized in Table I according to their goal, methodology
and deployment. Summary shows there is not a single solution
that addresses every issue. To tackle wide variety of new
malware, a comprehensive evaluation framework incorporating
robust static and dynamic methods can be proposed on Android
platform.

Manual analysis has become infeasible due to the expo-
nential increase in the number of unknown malware samples.
Based on the current reviews, this paper proposes an automated,
hybrid approach for Android malware analysis. Architecture of
the proposed approach shown in Fig. 15 is our future research
direction. As illustrated the APK file is initially dissected
with static analysis module. In case of its failure against the
encrypted code, dynamic analysis module performs behavioral
detection. Static and dynamic analysis will be used to generate
app activity reports to enable a malware analyst identify the
suspicious sample. Finally, we conclude by highlighting the
fact that hybrid detection approaches are gaining prominence
in malware analysis.

APPENDIX

See Listing 1.

FARUKI et al.: ANDROID SECURITY: A SURVEY OF ISSUES, MALWARE PENETRATION, AND DEFENSES 1019

Listing 1. AndroidManifest.xml snippet with declared components.

REFERENCES

[1] G. Inc., Android Smartphone Sales Report, 2013, (Online; Last Accessed
Mar. 17, 2014). [Online]. Available: http://www.gartner.com/newsroom/
id/2665715

[2] Android Malware Genome Project, (Online; Last Accessed Feb. 11,
2014). [Online]. Available: http://www.malgenomeproject.org/

[3] C. A. Castillo, “Android malware past, present, future,” Mobile Work-
ing Security Group McAfee, Santa Clara, CA, USA, Tech. Rep.,
2012.

[4] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smart-
phone applications in third-party android marketplaces,” in Proc. 2nd
ACM CODASPY , New York, NY, USA, 2012, pp. 317–326. [Online].
Available: http://doi.acm.org/10.1145/2133601.2133640

[5] AppBrain, Number of applications available on Google Play, (Online;
Last accessed Oct. 10, 2014). [Online]. Available: http://www.appbrain.
com/stats/number-of-android-apps

[6] Google Bouncer: Protecting the Google Play market, (Online; Last Ac-
cessed Oct. 15, 2013). [Online]. Available: http://blog.trendmicro.com/
trendlabs-security-intelligence/a-lookat-google-bouncer/

[7] Android and security: Official mobile google blog, (Online; Last Ac-
cessed Oct. 15, 2013). [Online]. Available: http://googlemobile.blogspot.
in/2012/02/android-and-security.html

[8] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-
application communication in Android,” in Proc. 9th Int. Conf. MobiSys,
New York, NY, USA, 2011, pp. 239–252. [Online]. Available: http://doi.
acm.org/10.1145/1999995.2000018

[9] PandaApp, (Online; Last Accessed Mar. 1, 2014). [Online]. Available:
http://www.pandaapp.com/

[10] Baidu, (Online; Last Accessed Mar. 1, 2014). [Online]. Available: http://
as.baidu.com/

[11] Opera Mobile App Store, (Online; Last Accessed Mar. 1, 2014).
[Online]. Available: http://apps.opera.com/en_in/

[12] AppChina, (Online; Last Accessed Mar. 1, 2014). [Online]. Available:
http://www.appchina.com/

[13] GetJar, (Online; Last Accessed Mar. 1, 2014). [Online]. Available: http://
www.getjar.mobi/

[14] ESET—Trends for 2013, (Online; Last Accessed Feb. 11).
[Online]. Available: http://go.eset.com/us/resources/whitepapers/
Trends_for_2013_preview.pdf

[15] Kaspersky Security Bulletin 2013, Overall statistics for 2013, (Online;
Last Accessed Feb. 11). [Online]. Available: https://www.securelist.com/
en/analysis/204792318/Kaspersky_Security_Bulletin_2013_Overall_
statistics_for_2013

[16] McAfee Labs Threats Report: Third Quarter 2013, (Online; Last
Accessed Feb. 11). [Online]. Available: http://www.mcafee.com/uk/
resources/reports/rp-quarterly-threatq3-2013.pdf

[17] F-Secure: Mobile Threat Report Q1 2013, (Online; Last Accessed
Feb. 11). [Online]. Available: http://www.fsecure.com/static/doc/
labs_global/Research/Mobile_Threat_Report_Q1_2013.pdf

[18] F-Secure: Mobile Threat Report Q3 2013, (Online; Last Accessed Feb.
11). [Online]. Available: http://www.fsecure.com/static/doc/labs_global/
Research/Mobile_Threat_Report_Q3_2013.pdf

[19] F-Secure: Mobile Threat Report H1 2013, (Online; Last Accessed
Feb. 11). [Online]. Available: http://www.fsecure.com/static/doc/
labs_global/Research/Threat_Report_H1_2013.pdf

[20] VirusTotal, (Online; Last Accessed Feb. 11, 2014). [Online]. Available:
https://www.virustotal.com/

[21] Android.Bgserv, (Online; Last Accesed Feb. 12, 2011). [Online].
Available: http://www.symantec.com/security_response/writeup.jsp?
docid=2011-031005-2918-99

[22] Backdoor.AndroidOS.Obad.a, (Online; Last Accesed Dec. 25, 2013).
[Online]. Available: http://contagiominidump.blogspot.in/2013/06/
backdoorandroidosobada.html

[23] RageAgainstTheCage, (Online; Last Accessed Feb. 11). [Online].
Available: https://github.com/bibanon/android-development-codex/
blob/master/General/Rooting/rageagainstthecage.md

[24] Android Hipposms, (Online; 2011). [Online]. Available: http://www.csc.
ncsu.edu/faculty/jiang/HippoSMS/

[25] Android/NotCompatible Looks Like Piece of PC Botnet, (Online; Last
Accesed Dec. 25, 2013). [Online]. Available: http://blogs.mcafee.com/
mcafee-labs/androidnotcompatible-looks-like-piece-of-pc-botnet

[26] E. Fernandes, B. Crispo, and M. Conti, “FM 99.9, radio virus: Exploit-
ing FM radio broadcasts for malware deployment,” IEEE Trans. Inf.
Forensics Security, vol. 8, no. 6, pp. 1027–1037, Jun. 2013.
[Online]. Available: http://dblp.uni-trier.de/db/journals/tifs/tifs8.html#
FernandesCC13

[27] R. Fedler, J. Schütte, and M. Kulicke, “On the Effectiveness of Mal-
ware Protection on Android,” Fraunhofer AISEC, Berlin, Germany,
Tech. Rep., 2013.

[28] C. Jarabek, D. Barrera, and J. Aycock, “ThinAV: Truly lightweight Mo-
bile Cloud-based Anti-malware,” in Proc. 28th Annu. Comput. Security
Appl. Conf., 2012, pp. 209–218.

[29] Kaspersky Internet Security for Android, (Online; Last Accessed
Feb. 11). [Online]. Available: http://www.kaspersky.com/
android-security

[30] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “RiskRanker: Scal-
able and accurate zero-day Android malware detection,” in Proc. 10th
Int. Conf. MobiSys, New York, NY, USA, 2012, pp. 281–294. [Online].
Available: http://doi.acm.org/10.1145/2307636.2307663

[31] G. Suarez-Tangil, J. Tapiador, P. Peris-Lopez, and A. Ribagorda, “Evo-
lution, detection and analysis of malware for smart devices,” IEEE
Commun. Surveys Tuts., vol. 16, no. 2, pp. 961–987, 2014.

[32] M. La Polla, F. Martinelli, and D. Sgandurra, “A survey on security for
mobile devices,” IEEE Commun. Surveys Tuts., vol. 15, no. 1, pp. 446–
471, 2013.

[33] W. Enck, “Defending users against smartphone apps: Techniques
and future directions,” in Proc. 7th ICISS, 2011, pp. 49–70. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-25560-1n_3

[34] Android Security Overview, (Online; Last Accesed Dec. 25, 2013).
[Online]. Available: http://source.android.com/devices/tech/security

[35] W. Enck, M. Ongtang, and P. McDaniel, “Understanding android secu-
rity,” IEEE Security Privacy, vol. 7, no. 1, pp. 50–57, Jan./Feb. 2009.
[Online]. Available: http://dx.doi.org/10.1109/MSP.2009.26

[36] Android Kernel Features, (Online; Last Accessed Mar. 9, 2014).
[Online]. Available: http://elinux.org/Android_Kernel_Features

[37] 〈permission〉, (Online; Last Accessed Feb. 11). [Online].
Available: http://developer.android.com/guide/topics/manifest/
permission-element.html

[38] B. Sanz et al., “PUMA: Permission Usage to detect Malware in An-
droid,” in Proc. Int. Joint Conf. CISIS-ICEUTE-SOCO’Spec. Sessions,
2013, pp. 289–298.

1020 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 2, SECOND QUARTER 2015

[39] J. Oberhide, Dissecting the Android Bouncer, (Online; Last Accessed
Jun. 1, 2012). [Online]. Available: http://jon.oberheide.org/blog/2012/
06/21/dissecting-the-android-bouncer/

[40] Exercising Our Remote Application Removal Feature, (Online; Last Ac-
cessed Feb. 11). [Online]. Available: http://androiddevelopers.blogspot.
in/2010/06/exercising-our-remote-application.html

[41] CVE, (Online; Last Accessed Feb. 11). [Online]. Available: http://cve.
mitre.org/

[42] G. Andre and P. Ramos, “Boxer SMS Trojan,” ESET Latin American
Lab, Bratislava, Slovakia, Tech. Rep., 2013.

[43] Android Version History, (Online; Last Accessed Mar. 11, 2014).
[Online]. Available: http://en.wikipedia.org/wiki/Android_version_
history

[44] L. Xing, X. Pan, R. Wang, K. Yuan, and X. Wang, “Upgrading your
android, elevating my malware: Privilege escalation through mobile OS
updating,” in Proc. IEEE Symp. Security Privacy, 2014, pp. 393–408.

[45] z4Root, (Online; Last Accessed Feb. 11). [Online]. Available: https://
github.com/bibanon/android-developmentcodex/blob/master/General/
Rooting/z4root.md

[46] Android Trickery, (Online; Last Accessed Feb. 11). [Online]. Available:
http://c-skills.blogspot.com/2010/07/androidtrickery.html

[47] Zimperlich Sources, (Online; Last Accessed Feb. 11). [Online].
Available: http://c-skills.blogspot.in/2011/02/zimperlichsources.html

[48] GingerBreak, (Online; Last Accessed Feb. 11). [Online]. Available:
http://forum.xda-developers.com/showthread.php?t=1044765

[49] zergrush, (Online; Last Accessed Feb. 11). [Online]. Available: http://
forum.xda-developers.com/showthread.php?t=1296916

[50] Z. Yajin and J. Xuxian, “Dissecting android malware: Characterization
and evolution,” in Proc. 33rd IEEE Symp. Security Privacy, Oakland,
CA, USA, 2012, pp. 95–109.

[51] Security Enhancements in Android 4.3, (Online; Last Accesed
Dec. 25, 2013). [Online]. Available: http://source.android.com/devices/
tech/security/enhancements43.html

[52] Security Enhancements in Android 4.2, (Online; Last Accesed
Dec. 25, 2013). [Online]. Available: http://source.android.com/devices/
tech/security/enhancements42.html

[53] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, “Paranoid
android: Versatile protection for smartphones,” in Proc. 26th ACSAC,
New York, NY, USA, 2010, pp. 347–356. [Online]. Available: http://
doi.acm.org/10.1145/1920261.1920313

[54] Validating Security-Enhanced Linux in Android, (Online; Last Accesed
Dec. 25, 2013). [Online]. Available: http://source.android.com/devices/
tech/security/se-linux.html

[55] M. Conti, B. Crispo, E. Fernandes, and Y. Zhauniarovich, “CRêPe: A
system for enforcing fine-grained context-related policies on android,”
Information Forensics and Security, IEEE Trans., vol. 7, no. 5, pp. 1426–
1438, Oct. 2012.

[56] M. Nauman, S. Khan, and X. Zhang, “Apex: Extending android per-
mission model and enforcement with user-defined runtime constraints,”
in Proc. ASIACCS, D. Feng, D. A. Basin, and P. Liu, Eds., 2010,
pp. 328–332. [Online]. Available: http://dblp.uni-trier.de/db/conf/ccs/
asiaccs2010.html#NaumanKZ10

[57] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.-R. Sadeghi,
“Xmandroid: A new android evolution to mitigate privilege escala-
tion attacks,” Technische Universität Darmstadt, Darmstadt, Germany,
Tech. Rep. TR-2011-04, 2011.

[58] M. Ongtang, S. E. McLaughlin, W. Enck, and P. D. McDaniel, “Se-
mantically rich application-centric security in android,” in Proc. ACSAC,
2009, pp. 340–349. [Online]. Available: http://dblp.uni-trier.de/db/conf/
acsac/acsac2009.html#OngtangMEM09

[59] Android Security Analysis Challenge: Tampering Dalvik Bytecode Dur-
ing Runtime, (Online; Last Accessed Feb. 11, 2013). [Online]. Available:
http://bluebox.com/labs/android-security-challenge/

[60] “State of mobile security,” Lookout Mobile Security, Tech. rep., 2012.
[61] “Current world of mobile threats,” Lookout Mobile Security, San

Francisco, CA, USA, Tech. rep., 2013.
[62] C. Lever, M. Antonakakis, B. Reaves, P. Traynor, and W. Lee, “The core

of the matter: Analyzing malicious traffic in cellular carriers,” in Proc.
NDSS, 2013, vol. 13, pp. 1–16.

[63] H. T. T. Truong et al., “The company you keep: Mobile malware in-
fection rates and inexpensive risk indicators,” in Proc. 23rd Int. Conf.
WWW, 2013, pp. 39–50.

[64] Carat: Collaborative Energy Diagnosis, (Online; Last Accesed Dec. 25,
2013). [Online]. Available: http://carat.cs.berkeley.edu/

[65] Fake Netxflix—Android trojan info stealer, (Online; Last Accessed
Feb. 11). [Online]. Available: http://contagiominidump.blogspot.in/
2011/10/fake-netxflix-adtroid-trojan-info.html

[66] F. Shahzad, M. A. Akbar, and M. Farooq, “A survey on recent ad-
vances in malicious applications analysis and detection techniques
for smartphones,” National Univ. Comput. Emerging Sci., Islamabad,
Pakistan.

[67] Spitmo vs Zitmo: Banking Trojans Target Android, (Online; Last
Accessed Feb. 11). [Online]. Available: https://blogs.mcafee.com/
mcafee-labs/spitmo-vs-zitmo-banking-trojans-target-android

[68] Fakedefender.B—Android Fake Antivirus, (Online; Last Accesed
Dec. 25, 2013). [Online]. Available: http://contagiominidump.blogspot.
in/2013/11/fakedefenderb-android-fake-antivirus.html

[69] avast! Free Mobile Security, (Online; Last Accessed Dec. 25, 2013).
[Online]. Available: http://www.avast.com/freemobile-security-c?
utmexpid=22755838-21.bXJmQHnQA6pakUW6PaLQQ.2&
utmreferrer=https%3A%2F%2Fwww.google.com%2F

[70] APKTool, Reverse Engineering with ApkTool, (Online; Accessed
Mar. 20, 2013). [Online]. Available: https://code.google.com/android/
apk-tool

[71] A. Inc., Class to Dex Conversion with Dx, (Online; Last Accessed
Mar. 5, 2013). [Online]. Available: http://developer.android.com/tools/
help/index.html

[72] Remote Access Tool Takes Aim with Android APK Binder, (Online; Last
Accessed Dec. 25, 2013). [Online]. Available: http://www.symantec.
com/connect/blogs/remote-access-tool-takes-aimandroid-apk-binder

[73] V. Rastogi, Y. Chen, and X. Jiang, “Droidchameleon: Evaluating An-
droid anti-malware against transformation attacks,” in Proc. 8th ACM
SIGSAC Symp. Inf., Comput. Commun. Security, 2013, pp. 329–334.

[74] M. Zheng, P. P. C. Lee, and J. C. S. Lui, “ADAM: An automatic and
extensible platform to stress test Android anti-virus systems,” in Proc.
DIMVA, 2012, pp. 82–101.

[75] ProGuard, (Online; Last Accessed Feb. 11). [Online]. Available: http://
proguard.sourceforge.net/

[76] DexGuard, (Online; Last Accessed Feb. 11). [Online]. Available: http://
www.saikoa.com/dexguard

[77] P. Faruki et al., “Evaluation of android anti malware techniques against
Dalvik bytecode obfuscation,” in Proc. 13th IEEE Int. Conf. TrustCom,
Beijing, China, Sep. 26–28, 2014.

[78] Dalvik Bytecode Obfuscation on Android, (Online; Last Ac-
cessed Feb. 11). [Online]. Available: https://dexlabs.org/blog/
bytecode-obfuscation

[79] BlackHat, Reverse Engineering with Androguard, (Online; Accessed
Mar. 29, 2013). [Online]. Available: https://code.google.com/androguard

[80] W. Zhou, Y. Zhou, and X. Jiang, “Hey, you get off my market: Detecting
malicious apps in official and third party android markets,” in Proc.
Annu. NDSS, New York, NY, USA, 2012, pp. 1–13.

[81] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, “‘Andro-
maly’: A behavioral malware detection framework for android devices,”
J. Intell. Inf. Syst., vol. 38, no. 1, pp. 161–190, 2012. [Online]. Available:
http://dblp.uni-trier.de/db/journals/jiis/jiis38.html#ShabtaiKEGW12

[82] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy: Semantics-
based detection of android malware,” in Proc. SIGSOFT FSE, 2014,
pp. 1–12.

[83] P. Faruki, V. Ganmoor, V. Laxmi, M. S. Gaur, and A. Bharmal, “An-
droSimilar: Robust statistical feature signature for Android malware
detection,” in Proc. SIN, A. Eli, M. S. Gaur, M. A. Orgun, and
O. B. Makarevich, Eds., 2013, pp. 152–159. [Online]. Available: http://
dblp.uni-trier.de/db/conf/sin/sin2013.html#FarukiGLGB13

[84] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, SCanDroid: Automated
security certification of Android applications, Manuscript. [Online].
Available: http://www.cs.umd.edu/~avik/projects/scandroidascaa

[85] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “CHEX: Statically vetting An-
droid apps for component hijacking vulnerabilities,” in Proc. ACM Conf.
Comput. Commun. Security, T. Yu, G. Danezis, and V. D. Gligor, Eds.,
2012, pp. 229–240. [Online]. Available: http://dblp.uni-trier.de/db/conf/
ccs/ccs2012.html#LuLWLJ12

[86] B. P. Sarma et al., “Android permissions: A perspective combining risks
and benefits,” in Proc. 17th ACM Symp. Access Control Models Technol.,
2012, pp. 13–22.

[87] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji, “A
methodology for empirical analysis of permission-based security models
and its application to android,” in Proc. 17th ACM Conf. CCS, 2010,
pp. 73–84.

[88] C.-Y. Huang, Y.-T. Tsai, and C.-H. Hsu, “Performance evaluation on
permission-based detection for android malware,” in Proc. Adv. Intell.
Syst. Appl.-Vol. 2, 2013, vol. 2, pp. 111–120.

[89] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone
application certification,” in Proc. 16th ACM Conf. Comput. Commun.
Security, 2009, pp. 235–245.

FARUKI et al.: ANDROID SECURITY: A SURVEY OF ISSUES, MALWARE PENETRATION, AND DEFENSES 1021

[90] J. Kim, Y. Yoon, K. Yi, J. Shin, and S. Center, “ScanDal: Static analyzer
for detecting privacy leaks in Android applications,” in Proc. Workshop
MoST , 2012, in conjunction with the IEEE Symposium on Security and
Privacy.

[91] H. S. Karlsen, E. R. Wognsen, M. C. Olesen, and R. R. Hansen, “Study,
formalisation, analysis of Dalvik bytecode,” in Proc. 7th Workshop
BYTECODE, 2012, pp. 1–9.

[92] Y. Aafer, W. Du, and H. Yin, “DroidAPIminer: Mining API-level
features for robust malware detection in Android,” in Proc. Se-
cureComm, vol. 127, Lecture Notes of the Institute for Computer Sci-
ences, Social Informatics and Telecommunications Engineering, T. Zia,
A. Y. Zomaya, V. Varadharajan, and Z. M. Mao, Eds., Springer,
2013, pp. 86–103. [Online]. Available: http://dblp.uni-trier.de/db/conf/
securecomm/securecomm2013.html#AaferDY13

[93] M. Zheng, M. Sun, and J. C. S. Lui, “DroidAnalytics: A signa-
ture based analytic system to collect, extract, analyze and associate
android malware,” in Proc. 12th IEEE Int. Conf. TrustCom, 2013,
pp. 163–171.

[94] JD-GUI, Android Decompiling with JD-GUI, (Online; Last Ac-
cessed Mar. 1, 2014). [Online]. Available: http://java.decompiler.free.fr/?
q=jdgui

[95] JAD, JAD Java Decompiler, (Online; Last Accessed Mar. 1, 2014).
[Online]. Available: http://varaneckas.com/jad/

[96] H. van Vliet, Mocha, The Java Decompiler, (Online; Last Accessed
Mar. 1, 2014). [Online]. Available: http://www.brouhaha.com/_eric/
software/mocha/

[97] SOOT, Soot: A Java optimization framework, (Online; Accessed Mar. 1,
2014). [Online]. Available: http://www.sable.mcgill.ca/soot/

[98] WALA, T. J. Watson Libraries for Analysis (WALA), (Online; Ac-
cessed Mar. 1, 2014). [Online]. Available: http://wala.sourceforge.net/
wiki/index.php/

[99] H. Inc., Fortify static code analyzer, (Online; Accessed Mar. 1, 2014).
[Online]. Available: http://www8.hp.com/us/en/softwaresolutions/
software.html?compURI=1338812

[100] E. William, O. Damien, M. Patrick, and C. Swarat, “A study of Android
application security,” in Proc. USENIX, San Francisco, CA, USA, 2011,
p. 163.

[101] D. Octeau, S. Jha, and P. McDaniel, “Retargeting Android applications
to Java bytecode,” in Proc. ACM SIGSOFT 20th Int. Symp. Found. Softw.
Eng., 2012, p. 6.

[102] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus, “Dexpler: Convert-
ing Android Dalvik bytecode to Jimple for static analysis with Soot,”
in Proc. ACM SIGPLAN Int. Workshop State Art Java Program Anal.,
2012, pp. 27–38.

[103] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks: Auto-
matically detecting potential privacy leaks in Android applications on a
large scale,” in Proc. Trust Trustworthy Comput., 2012, pp. 291–307.

[104] Dex2Jar, Android Decompiling with Dex2jar, (Online; Last Accessed
May 15, 2013). [Online]. Available: http://code.google.com/p/dex2jar/

[105] UI/Application Exercise Monkey, (Online; Last Accessed Feb. 11).
[Online]. Available: http://developer.android.com/tools/help/monkey.
html

[106] T. Vidas and N. Christin, “Evading android runtime analysis via sandbox
detection,” in Proc. 9th ACM ASIA CCS, New York, NY, USA, 2014,
pp. 447–458. [Online]. Available: http://doi.acm.org/10.1145/2590296.
2590325

[107] A. Reina, A. Fattori, and L. Cavallaro, “A system call-centric analysis
and stimulation technique to automatically reconstruct Android malware
behaviors,” in Proc. EUROSEC, Prague, Czech Republic.

[108] D. Damopoulos, G. Kambourakis, and G. Portokalidis, “The best of both
worlds: A framework for the synergistic operation of host and cloud
anomaly-based IDS for smartphones,” in Proc. 7th EuroSec, New York,
NY, USA, 2014, pp. 6:1–6:6. [Online]. Available: http://doi.acm.org/10.
1145/2592791.2592797

[109] E. William, G. Peter, C. Byunggon, and C. Landon, “TaintDroid: An
information flow tracking system for realtime privacy monitoring on
smartphones,” in Proc. USENIX, 2011.

[110] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid:
Behavior-based malware detection system for Android,” in Proc. 1st
ACM Workshop Security Privacy Smartphones Mobile Devices, 2011,
pp. 15–26.

[111] K. O. Elish, D. (Daphne) Yao, and B. G. Ryder, “User-centric depen-
dence analysis for identifying malicious mobile apps,” in Proc. Work-
shop MoST , 2012.

[112] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “AsDroid: Detecting
stealthy behaviors in android applications by user interface and program
behavior contradiction,” in Proc. ICSE, 2014, pp. 1036–1046.

[113] L. K. Yan and H. Yin, “DroidScope: Seamlessly reconstructing the OS
and Dalvik semantic views for dynamic Android malware analysis,” in
Proc. 21st USENIX Security Symp., 2012, p. 29.

[114] BakSmali, Reverse Engineering with Smali/Baksmali, (Online; Ac-
cessed Mar. 20, 2013). [Online]. Available: https://code.google.com/
smali

[115] DARE: Dalvik Retargeting, (Online; Last Accessed Feb. 11, 2013).
[Online]. Available: http://siis.cse.psu.edu/dare/

[116] Dedexer, (Online; Last Accessed Feb. 11, 2013). [Online]. http://dedexer.
sourceforge.net/

[117] JEB Decompiler, (Online; Last Accessed Feb. 11, 2013). [Online].
Available: http://www.android-decompiler.com/

[118] Similarities for Fun & Profit.
[119] V. Roussev, “Data fingerprinting with similarity hashes, advances in

digital forensics,” in Proc. Int. Conf. Digit. Forensics, 2010, pp. 207–
226.

[120] V. Roussev, “Building a better similarity trap with statistically improba-
ble features,” in Proc. 42nd HICSS, 2009, pp. 1–10.

[121] Andrubis, 2012. [Online]. Available: http://anubis.iseclab.org/
[122] A. Desnos and P. Lantz, “Droidbox: An android application sandbox for

dynamic analysis, 2011. [Online]. Available: https://code.google.com/p/
droidbox/

[123] APKInspector, 2013. [Online]. Available: https://github.com/honeynet/
apkinspector/

[124] ded: Decompiling Android Applications, (Online; Last Accessed
Feb. 11). [Online]. Available: http://siis.cse.psu.edu/ded/

[125] R. Xu, H. Saïdi, and R. Anderson, “Aurasium: Practical policy enforce-
ment for Android applications,” in Proc. 21st USENIX Conf. Security
Symp., 2012, pp. 27–27, USENIX Association.

[126] Google Bouncer: Bad guys may have an app for that, Feb. 2012.
[Online]. Available: http://www.techrepublic.com/blog/it-security/
google-bouncer-badguys-may-have-an-app-for-that/7422/

[127] CopperDroid, Feb. 2012. [Online]. Available: http://copperdroid.isg.
rhul.ac.uk/copperdroid/index.php

[128] J. Kornblum, “Identifying almost identical files using context triggered
piecewise hashing,” Digit. Investigation, vol. 3, pp. 91–97, Sep. 2006.
[Online]. Available: http://dx.doi.org/10.1016/j.diin.2006.06.015

[129] Drozer—A Comprehensive Security and Attack Framework for Android,
(Online; Last Accessed Feb. 11, 2013). [Online]. Available: https://www.
mwrinfosecurity.com/products/drozer/

[130] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe exposure
analysis of mobile in-app advertisements,” in Proc. 5th ACM Conf.
WISEC, New York, NY, USA, 2012, pp. 101–112. [Online]. Available:
http://doi.acm.org/10.1145/2185448.2185464

[131] A. Narayanan, L. Chen, and C. K. Chan, “Addetect: Automated detection
of android ad libraries using semantic analysis,” in Proc. IEEE 9th Int.
Conf.ISSNIP, Singapore, Apr. 21–24, 2014, pp. 1–6. [Online]. Available:
http://dx.doi.org/10.1109/ISSNIP.2014.6827639

[132] H. Dong, J. Kang, J. Schafer, and A. Ganz, “Android-based visual tag
detection for visually impaired users: System design and testing,” Int.
J. E-Health Med. Commun., vol. 5, no. 1, pp. 63–80, 2014. [Online].
Available: http://dx.doi.org/10.4018/ijehmc.2014010104

[133] P. Faruki, V. Ganmoor, L. Vijay, M. Gaur, and M. Conti, “Android
Platform Invariant Sandbox for Analyzing Malware and Resource
Hogger apps,” in Proc. 10th IEEE Int. Conf. SecureComm, Beijing,
China, Sep. 26–28, 2014, pp. 1–6.

[134] G. Suarez-Tangil, M. Conti, J. E. Tapiador, and P. Peris-Lopez,
“Detecting targeted smartphone malware with behavior-triggering
stochastic models,” in Proc. Eur. Symp. Res. Comput. Security, 2014,
pp. 183–201.

[135] Dendroid malware can take over your camera, record audio, sneak into
Google Play, (Online; 2014). [Online]. Available: https://blog.lookout.
com/blog/2014/03/06/dendroid/

[136] S. Neuner et al., “Enter sandbox: Android sandbox comparison,” in Proc.
IEEE MoST , 2014.

[137] P. Ratazzi et al., “A systematic security evaluation of android’s multi-
user framework,” in Proc. IEEE MoST , 2014, pp. 1–10.

[138] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and
S. Ioannidis, “Rage against the virtual machine: Hindering dynamic
analysis of android malware,” in Proc. 7th Eur. Workshop Syst. Security,
2014, Art. ID. 5.

[139] M. Lindorfer, Andrubis: A tool for analyzing unknown android ap-
plications. [Online]. Available: http://www.seclab.tuwien.ac.at/papers/
andrubis_badgers14.pdf

[140] M. Lindorfer et al., “Andrubis—1,000,000 apps later: A view on current
Android malware behaviors,” in Proc. 3rd Int. Workshop BADGERS,
2014, pp. 1–15.

1022 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 2, SECOND QUARTER 2015

[141] L. Weichselbaum et al., “Andrubis: Android malware under the magnify-
ing glass,” Vienna University of Technology, Wien, Austria, Tech. Rep.
TR-ISECLAB-0414-001, 2014.

[142] T. Bläsing, L. Batyuk, A.-D. Schmidt, S. A. Çamtepe, and S. Albayrak,
“An android application sandbox system for suspicious software detec-
tion,” in Proc. MALWARE, 2010, pp. 55–62.

[143] C. Zheng et al., “SmartDroid: An automatic system for revealing UI-
based trigger conditions in android applications,” in Proc. 2nd ACM
Workshop SPSM, New York, NY, USA, 2012, pp. 93–104. [Online].
Available: http://doi.acm.org/10.1145/2381934.2381950

Parvez Faruki received the bachelor’s degree
in computer engineering from L.D. Engineering,
Ahmedabad, India, in 2000 and the M.Tech degree
from the Malaviya National Institute of Technology
(MNIT), Jaipur, India, in 2012, where he is pursuing
doctoral research on android security with the CSE
Department. He has conceptualized DroidAnalyst
and proposed AbNORMAL and AndroSimilar anal-
ysis techniques. His research interests include mal-
ware analysis, mobile platform security, and machine
learning techniques.

Ammar Bharmal is an M.Tech Scholar working on
Android malware analysis with the CSE Department,
Malaviya National Institute of Technology, Jaipur,
India. He has been actively involved in mobile plat-
form security research since 2012.

Vijay Laxmi received the BTech degree in ECE
from JNV University, Rajasthan, India, in 1991, the
MTech degree in CSE from IIT Delhi, New Delhi,
India, in 1992, and the Ph.D. degree in ECS in 2003
from the University of Southampton, Southampton,
U.K., under Commonwealth Scholarship and Fel-
lowship. She is an Associate Professor in computer
science and engineering at the Malaviya National
Institute of Technology, Jaipur, India. As a Princi-
pal Investigator, she has completed three research
projects. She is actively involved in malware re-

search. She has supervised seven Ph.D. candidates, four covering different
aspects of information security. To date, she has more than 60 papers in refereed
conferences/journals in the area of information security.

Vijay Ganmoor is an M.Tech Scholar working on
Android malware analysis with the CSE Department,
Malaviya National Institute of Technology, Jaipur,
India. He has been actively involved in mobile plat-
form security research since 2012.

Manoj Singh Gaur received the BE(ECE) degree
from JNV University, Rajasthan, India, in 1988, the
ME(CSE) degree from IISc Bangalore, Bangalore,
India in 1994, and the Ph.D. degree in ECS from the
University of Southampton, Southampton, U.K., in
2004. He has been teaching for the past 25 years. He
is a Professor in computer science and engineering
at the Malaviya National Institute of Technology,
Jaipur, India. He has supervised seven Ph.D. candi-
dates, four covering different aspects of information
security. He has also successfully completed six re-

search projects. His research interests include information security, particularly
malware analysis.

Mauro Conti (SM’10) received the Ph.D. degree
from the Sapienza University of Rome, Rome, Italy,
in 2009. After his Ph.D., he was a Postdoctoral Re-
searcher at Vrije Universiteit Amsterdam, Amster-
dam, The Netherlands. He was a Visiting Researcher
at GMU (2008), UCLA (2010), UCI (2012–2014),
and TU Darmstadt (2013). He is an Associate Pro-
fessor at the University of Padua, Padua, Italy. His
main research interest is in the area of security and
privacy. In this area, he published more than 80 pa-
pers in topmost international peer-reviewed journals

and conferences. Dr. Conti was a recipient of a Marie Curie Fellowship (2012)
from the European Commission and a Fellowship from the German DAAD
(2013). He served as a Program Committee Member of several conferences. He
served as a Panelist at the ACM CODASPY 2011 and the General Chair for
SecureComm 2012 and ACM SACMAT 2013.

Muttukrishnan Rajarajan received the Ph.D. de-
gree from the City University London, London,
U.K., in 2001. He is a Professor in security engi-
neering at the City University London. His research
expertise is in the areas of mobile security, intrusion
detection, and privacy techniques. He has chaired
several international conferences in the area of infor-
mation security and involved in the editorial boards
of several security and network journals. He is also
a Visiting Research Fellow at the British Telecom-
munications UK and is currently actively engaged in

the U.K. Government’s Identity Assurance Program. He is a Member of the
ACM and an Advisory Board Member of the Institute of Information Security
Professionals UK.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

