Western Norway
University of

Applied Sciences

Digital Sighature and Hashing
DAT159 — Basic Cryptography Module

Tosin Daniel Oyetoyan

Digital Signature

* A digital signature is a mathematical scheme for presenting the
authenticity of digital messages or documents

* A valid digital signature gives a recipient reason to believe that the
message was created by a known sender (authentication)

 that the sender cannot deny having sent the message (non-
repudiation)

» and that the message was not altered in transit (integrity)

https://en.wikipedia.org/wiki/Digital_signature

Non-Repudiation,Authentication and Integrity

* How do we provide Non-repudiation, authentication and integrity of
data
* Non-repudiation (Digital Signature)
» Authentication (Digital Signature)
* Integrity (Digital Signature/Hashing)

Principle of Digital Signature

* Analogous to handwritten signature in the analog world
* Prove that the sender is the actual sender
* Only the person who creates a message should be able to sign it

2 3

Alice Bob

(x,5)

Kpub —s ver [——> True/False

sig

Digital Signature Protocol

2 3

Alice Bob

Generate k5, Kpypp

kpubB i j
Publish public key (kpyupp)
Sign message:
S = SigkprB (x)
(x,s)

Send message + signature

Verify signature:
Vel s (x,s) = true/false

* A signed message can be unambiguosly traced back to its originator
* Note that the above setup does not provide confidentiality

Asymmetric Encryption vs. Digital Signature

* Digital Signature is based on asymmetric cryptography

* In asymmetric encryption, the sender (Bob) uses:
* The published public key of the intended recipient (Alice) to encrypt message

* The recipient (Alice) uses her private key to decrypt the message

* In digital signature, the sender (Bob) uses:
* His private key to sign (‘encrypt’) the message intended for the recipient
(Alice)

* The recipient (Alice) uses the sender’s (Bob) public key to verify the
correctness of the signature.

Examples of Signature Schemes

* RSA Digital Signature

e Elgamal Digital Signature

e Digital Signature Algorithm (DSA) — NIST

* Schnorr Signature Scheme

* Elliptic Curve Digital Signature Algorithm (ECDSA)

RSA Digital Signature

* RSA Keys
* Bob’s private key: k. = (n,d)
* Bob’s public key: ky, = (1, €)

3

Alice

(n, e)

(x,5)

Verify signature: very, - (x,s)
x' =s®modn

, _|=xmodn, = wvalid signature
= {i x mod n, = invalid signature

3

Bob

Generate:k,, = d, kpyp = (0, €)

Compute signature:
§ = Sigg,, (x) = x% mod n

Send message + signature

Proof! (RSA Signature)

s = x%mod n
x'=s®modn

= (x4)° mod n

=
Il

x%€ mod n

=
Il

d.e =1 mod n (because dis the inverse of e)

x'" = x mod n (Valid signature).

Example

* Bob wants to send a sighed message to Alice.
* Bob computes his RSA key parameters (Public/Private keys).
* Then Bob sends Alice his public key.

* Bob signs the message x with his private key and sends the message x and signature s
to Alice.

 Alice verifies the signature s using Bob’s public key.

Alice Message x = 4 Bob

1. Choose p=3 andg=11
2. n=p.g=33

3. @(n)=(3-1)(11-1)=20
4. Choose e=3

5 d=e1=7mod?20

(n, e) kou=(33,3) and k,,=(33,7)
kous=(33,3)

Compute signature:

— yd
Verify: (x,s) = (4,16) s=xmod n
' = s¢ mod n =47 mod 33 = 16 mod 33

=163mod33=4

Elgamal Digital Signature

* Key Generation (k,,;, = (p, @, B))
* Choose a large prime p.
* Choose a primitive element « of Z; or a subgroup of Z,
* Choose arandom integerd € {2,3,:-,p — 2}
« Compute f = a® mod p

* Signature Generation (Sigkpr(x, kg) = (r,5s))
* Choose a random ephemeral key kg € {0,1,2,:--,p — 2} such that gcd(kg,p —1) =1
e Compute the signature parameters:
c r=afEmodyp
e s=(x—d.nNkglmodp—1

* Signature Verification (very,,, (x, (,5)))
* Compute the value:
s t=B".r"modp
* The verification:

Rt a* mod p, = wvalid signature
~ | # a* mod p, = invalid signature

Proof! (Elgamal Signature)

L =a%modp

r =’ mod p t=p".r°modp
s=(x—dnrkglmodp—1

-1
t = ad.r . akE(x—d.r)kE

dr . kg.kgt(x-dr)

t=« . a

t=a% . a® 4" (kp . kgl =1)

d.r —-d.r

t=a%*".a*.«a

dr—-d.r X

t=a«a (04

t = a”* mod p (Valid signature).

Challenge with RSA and Elgamal Signature

Digital Signature Algorithm

* Key Generation
* Generate a prime p with 21023 < p < 21024
* Find a prime divisor g of p — 1 with 21°% < g < 2160
* Find an element a with ord(a) = g, i.e. a generates the subgroup with
q elements

* Choose arandom integer d with 0 < d < gq.
« Compute 8 = a® mod p.

* The keys are:

pub — (p» q,«, ,8)
kpr = (d)

Digital Signature Algorithm

* DSA Signature Generation (Sigkpr(x, kg) = (r,5))

* Choose a random ephemeral key kr € {0,1,2,---,q — 1} such that
ng(kErp — 1) =1
* Compute the signature parameters:
* r = (a®E mod p) mod q
« s = (SHA(x) —d.r)kz'mod q.

* DSA Signature Verification (very,,, (x, (1,5)))

 Compute auxiliary value w = s~ mod q.
» Compute auxiliary value u; = w.SHA(x) mod q.
* Compute auxiliary value u, = w.r mod q.
* Compute:
* v=(a™.p%2 modp)mod q
The verification:

_|=rmodq, = wvalid signature
V=12 rmod q, = invalid signature

Proof! (Digital Signature Algorithm)

s = (SHA(x) +d.7).kz'mod q

kr = s 1SHA(x) +d.s"t.r mod q

kr =uy +d.u, mod q

a®E mod p = a*“114% mod p

a®E mod p = a*t %2 mod p

(a*E mod p) mod q = (a* B2 mod p) mod q

r =vmod q (Valid signature)

L =a%modp

w =s"1mod q.

u; = w.SHA(x) mod q.

u, = w.r mod q.

v = (a*t. %2 mod p) mod q

r = (a®E mod p) mod q

s = (SHA(x) — d.r)kz'mod q.

Signing Long messages

* Computational load

* Based on computationally intensive asymmetric operations (e.g. modular
exponentiation)

* Message overhead
* Sends both the message and the signature (appr. Same length)

* Security Limitations
* Messages and signatures can be tampered with (e.g. rearranging them)

Plaintext O Plaintext 1 Plaintext 2

_—
Signature O Signature 2

I

Hash Functions

* Reduce arbitrary-length input (message) to fixed-length (128
or 160bit) output

* Compression
* Finger printing
* Message Digest

* Use in conjuction with Digital signature for long messages
* Hash functions don’t have keys
* Hash functions don’t encrypt

Properties of Cryptographic Hashing Functions

* Computationally efficient
* To be useful in practice, it has to be fast

 Collision resistant
* Must not produce the same hash outputs (Theoretically impossible)

One-wayness
* Infeasible to generate message from hash

Infeasible to modify message without modifying the hash
Infeasible to find two different message with same hash

Randomness
* Almost same message must produce two very different hashes
« e.g. MD5(dat159) = d782e7777341e93¢2a040dfb71a6ba75
* and MD5(Dat159) = f0cc49f6d282171e9f1900a76c83f07d

Security Regirements for Hash Functions

* Preimage resistance (one-wayness)
» Second preimage resistance (or weak collision resistance)
* Collision resistance (or strong resistance)

Properties of a Cryptographic Hash Function

e Can't deduce input from output (Preimage resistance)
e Can't generate a given output (Weak collision resistance)

e Can't find two inputs which produce the same output (Strong collision
resistance)

* A given input always produces the same output

Input (e.g. 2°0%) > H () » Output (e.g. 21%8)

Preimage Resistance

* One-wayness
e Can we derive a message from its hash output?
* Given a hash output z it must be computationally infeasible to find an input message x
such that
* z=h(x)
* Given a fingerprint, we cannot derive a matching message
c i.e.x # h™1(x)

e Why?

* Only verifies and does not parse

X H() H(x)

Is it possible?

Second Preimage Resistance or Weak Collision
Resistance

A collision occurs when two different inputs hash to the same output
* Two different messages must not hash to the same value

* For x,y € Input and H(x),H(y) € Output > x!'=y & H(x) = H(y)
* If a Hash function is not injective (one-to-one), collisions are inevitable

* There is always a probability that collision happens in Hash function

100

Probability of hash collision

Input _>H () — Output

Number of 32-bit hashes

Second Preimage Resistance or Weak
Collision Resistance

 Susbstitution attack by Man-In-The-Middle
* i.e. given two different messages x; # x,

* It should be computationally infeasible to create
* z; = h(x1) = h(x) = z,

Think about password hash. If an arbitrary value can hash to the same password hash,
then it is possible for an attacker to be authenticated

Strong Collision Resistance and Birthday Paradox

* It should be computationally infeasible to find two different messages x; #
* If an attacker can alter x, and x, in n locations to achieve h(x,) = h(x,)

e 2" different hash values
* |f n = 80bits, an attacker really needs 24° computations due to the birthday paradox

* Birthday paradox

* How many people are needed at a party such that there is a reasonable chance that at
least two people have the same birthday?

. 1 2 k-1
P(no collision among k people) = (1 — %) (1 — %) (1 — %)
P(at least one collision) = 1 — P(no collision)
k = 23 people
g 1 23-1 \h/
P(at least one collision) = 1 — (1 — %) (1 ~ et) = 0.507 = 50%

k = 40 people
We get a probability of about 90% h(x{) = h(xy)

Hash values needed for collision in a birthday
attack

* To thwart collision attacks based on birthday paradox

* Output length of a hash function must be about twice as long as an output
length that can protect against second preimage attack (brute-force attack)

Hash output length
A | 128 bit 160 bit 256 bit 384 bit 512 bit
0.5 265 281 2129 2193 2257
0.9 267 282 2130 2194 2258

Defense by salting Hash

* Since there is no way to produce a message from hash

* Brute-force attacks are mostly used

 e.g. attacker can precompute many hash outputs
* Easy to use as lookup tables

* Solution is to add random input to the message before hashing

* Prevents brute-force and rainbow attacks

X | e H —— H(x)
Random input + X — — H(y)

Common Hash Functions

 MD4 Family (Message Digest)
 MD4 (128 bits)
* MD5 (128 bits)
* MD6 (up to 512 bits)

e SHA Family (Secure Hashing)
e SHA-1 (160 bits)
e SHA-2 (variants: SHA-256 and SHA-512 b)
* SHA-3
* RIPEMD (RACE Integrity Primitives Evaluation Message Digest)
* RIPEMD-160 (160 bits)

* Crypt, becrypt, scrypt, PBKDF2

Collisions

_ Output Input No.of Collisions
Algorithm [bit] [bit] rounds found
MD5 128 512 64 yes

SHA-1 160 512 80 Not yet
SHA-224 224 512 64 no
SHA-256 256 512 64 no

SHA-2
SHA-384 384 1024 80 no
SHA-512 512 1024 80 no

e 2004 Wang et. al
delivered an algorithm
that could produce
collisions in a few hours
on an IBM p690 cluster

e Algorithm was improved
by Lenstra et. al in 2005
to a few hours on a
single laptop

MD5 Algorithm

e designed by Ronald Rivest (the “R” in RSA)

* latest in a series of MD2, MD4

e produces a 128-bit hash value

* Used to be the most widely used hash algorithm
* specified as Internet standard RFC1321

Preprocessing — Message Padding

* Message
* Must be padded to fit a multiple of 512 bit

. ﬁppend "1" followed by I zero bits and the binary 64-bit representation of

| = 448 — (k + 1), where | = number of zeroes and k = length of message

Padding Message length

(1 to 512 bits) (K mod 264)

L x 512 bits = N x 32 bits -
K bits \\

Message 100..0 T

4 A

Message Padding - Example

* M = "abc"
* M =01100001 01100010 01100011,
e len(M)=k =8 * 3 =24 bits

* Append a "1" followed by | =423 zero bits (| =448 — (24 + 1) =
423 mod 512)

* Append 64-bit representation of k in binary
* i.e. k=24,,=110002 (we make this 64 bit by appending Os to the left)

01100001 01100010 01100011 1 00..0 00..011000

a b C 423 zeros 64-bit for k=24

5.

MD5 - Overview

pad message so its length is 448
mod 512

append a 64-bit length value to
message

initialise 4-word (128-bit) MD
register/buffer (A,B,C,D)

Brocess message in 16-word (512-
it) blocks:

e using 4 rounds of 16 bit operations on
message block & buffer

e add output to buffer input to form new
buffer value

output hash value is the final buffer
value

Message length
mod 264)

(K

F ¥

L x 512 bits = N x 32 bits
K bits

Message

-
[%oo |

?

'

512 bits——ippatp——512 bits——ip ——512 bits—ypm

SHA

* SHA was designed by NIST & NSA in 1993, revised 1995 as SHA-1

e US standard for use with DSA signature scheme
e standard is FIPS 180-1 1995, also Internet RFC3174
* note: the algorithm is SHA, the standard is SHS

* produces 160-bit hash values
* now the generally preferred hash algorithm
* based on design of MD4 with key differences

SHA Overview

3.

4.

5.

pad message so its length is 448 mod 512
append a 64-bit length value to message

initialise 5-word (160-bit) buffer (A,B,C,D,E) to
(67452301,efcdab89,98badcfe,10325476,c3d2e1f0)
process message in 16-word (512-bit) chunks:
 expand 16 words into 80 words by mixing & shifting

* use 4 rounds of 20 bit operations on message block & buffer
 add output to input to form new buffer value

output hash value is the final buffer value

SHA-1 vs MD5

*brute force attack is harder (160 vs 128 bits for
MD5)

*not vulnerable to any known attacks (compared
to MD4/5)

*a little slower than MD5 (80 vs 64 steps)

Applications

e |

D
[eo]
sHa2z | e

1111/ ——

Server

A4 A4
ZRvmCKHoede... bmml hams?ﬂ ZRvmCKHoede...

An example

Applications

 Alice wants to update a very large document in Dropbox repository.

 She wants to be sure that when she downloads the document it is
exactly the same document.

* An adversary wants to substitute Alice's document for a forged one.

Repository

Applications: Hash

”Hl“ﬁu

3

Alice

_— 7ED5601AC075EB H()

—

7ED5601AC075EB

' g i
7 Repository

,/

,/
JRe I 9E55601BA065EF I

As a protection, Alice cbmputes a .

hash value of the document and e

appends it to the document on JRe
the repository and keeps a copy .
on her local system ot

Assume the adversary gained access to
the repository and replaces Alice’s H()
document. However, the hash value of l

the new document will be different 9E55601BA065EF

When Alice downloads the document
again, she has to compare the hash
value to the copy she has on her system
which would not be the same.

Applications: Password storage and verification

Plaintext /

password

Hashed
value

password123

/

7ED5601AC075EB

Password
Database

User enters ——

1234567

Hashed value — 9E55601BA065EB

* Even your org must not know the users password!!!
* Internal and external threats

* Reduce security breach for password attacks
e By storing the hash digests with the user names

y

Do they

Password

Database

7ED5601AC075EB

Yes

Access granted

Applications: Biometrics and Fingerprints

79054025
_ 255fbla2
6e4bc422 BN
aef54eb4 e

Cryptography Hash functions to compute cryptographic
values from personal biometrics data (e.g. fingerprint,
retinal-scan, etc.)

Message Authentication Code (MAC)

* Cryptographic checksum or keyed hash function

* Widely used in practice

e Shares similar properties with digital signatures

e Authentication and Integrity
* i.e. Who is the sender? and Has the message been tampered with?

* Uses symmetric keys unlike digital signatures
* Do not provide non-repudiation

Message Authentication Code (MAC)

There's o-
r_o\/oTe n

* A MAC authenticates a message
* A signature based on a secret key

* Hash algorithm + key to make hash value
dependent on the key
* Most common form is HMAC (hash MAC)

* hash(key, hash(key, data))
* Naming: hash + key = HMAC-hash

e MID5 1 HMAC-MD5
e SHA-1 1 HMAC-SHA (recommended) L_b_;—

91268e4faba8c82cl
1bce58b739c9c7eae
c4736e

Hashing and Digital Signature

 Combines a hash with a digital signature algorithm
* To sign
* hash the data

* encrypt the hash with the sender's private key
* send data, signer’s name and signature.

 To verify
* hash the data
* find the sender’s public key

* decrypt the signature with the sender's public key
* the result of which should match the hash

Hashing + Digital Signature

Original
Data

Original
Data
Hashing
Algorithm
* Encryption
N
One-way L‘_,-J Digital
Hash Private Signature
Key

Hashing
Algorithm >

One-way

Hash

Decryplion

Digital One-way

Signature Public Hash

Key

Identical Hashes
Validate Data Integrity

Quiz — 5mins

In digital signature:

a) The public key is used to sign the message and the private key used to verify the signature
b) The public key is used to encrypt the message and the private key is used to decrypt it
c) The private key is used to sign the message and the public key to verify

Hash functions should be collision resistant because:

a) Authentication can only be achieved if there is no collision
b) Integrity can only be preserved if there is no collision
c) Confidentiality can only be achieved if there is no collision
MAC
a) Uses asymmetric keys and provide authentication and integrity
b) Uses symmetric key and provide authentication and integrity
c) Uses symmetric key and provide authentication, integrity and non-repudiation

One-wayness of a hash function means

a) Two different messages cannot hash to the same hash values
b) One message cannot produce two different hash values
c) It is not possible to derive the input from the hash output

Which hash function has collision been found?

a) SHA-256
b) MD5
c) RIPEMD-160
What is the major difference between MAC and Hashing
a) MAC provides integrity
b) MAC provides authentication
c) MAC provides confidentiality
What is the major difference between MAC and digital signature
a) MAC hashes the message and encrypt with the private key
b) MAC hashes the message and the symmetric key
c) MAC hashes the message
Why do we need to hash in digital signature?
a) Because we need irreversible function
b) Because of speed and size

c) To avoid message collisions

Resources

* https://lisk.io/academy/blockchain-basics/how-does-blockchain-
work/what-is-hashing

* https://preshing.com/20110504/hash-collision-probabilities/

* Cryptography and Network Security (Various Hash Algorithms) — Lecture
slides by Laurie Brown

 https://blog.agilebits.com/2013/01/18/authenticated-encryption-and-
how-not-to-get-caught-chasing-a-coyote/

* https://www.jscape.com/blog/what-is-hmac-and-how-does-it-secure-file-
transfers

* Crypto-Hashing and applications: Curs 2017

e Paar & Pelzi. Understanding Cryptography: A Textbook for Students and
Practitioners

