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Symmetric vs. Asymmetric Cryptography

• Secure encrypted communication between two parties required that
they first exchange keys by some secure physical channel (e.g. List 
transported by trusted courier)

• Symmetric cryptography
• Key distribution problem (key exchange)

• Key management problem
• Scalability (Number of keys)

• Alice or Bob can deny their actions (Non-repudiation)



Major breakthrough
• Symmetric cryptography was used for at least 4000 years

• 1976
• Public Key Crypto was first presented by Martin Hellman, Ralph Merkle, and 

Whitfield Diffie at Stanford University in 1976. 
• Then named as Diffie–Hellman key exchange method, although built on the

PhD work of Ralph Merkle
• allows two parties that have no prior knowledge of each other to jointly establish a 

shared secret key over an insecure channel

• Declassified documents in 1997 by the British government revealed that
James Ellie, Clifford Cocks and Graham Williamson from UK’s GCHQ 
discovered/realized the public key crypto between 1970 and 1974

• 1977
• RSA was officially published

• named after (Rivest-Shamir-Adleman)

• Public key crypto to secure data transmission



Public key cryptography

• Provides
• Non-repudiation

• Authentication

• Confidentiality

• ‘One-way’ function

• Trapdoor function

• Easy to compute (encrypt) but hard to invert (decrypt)

• Public/private keys are mathematically related



Challenges with asymmetric cryptography

• Computationally expensive (100x – 1000x slower to symmetric)

• Distribution of new keys

Because asymmetric cryptography is slow, in practice, symmetric cryptography is used together with
asymmetric cryptography (Hybrid cryptography) when encrypting large blocks of data
Asymmetric key is used to securely transport a jointly agreed symmetric key to be used for the actual encryption



Public/private key pairs



Public/Private Key pair

Bob

Alice



SSH protocol Illustrated

• Authentication
• Confidentiality
• Integrity



Secure Shell (SSH) – Authentication illustrated

SSH-CONNECT
SSH-USERAUTH
SSH-TRANS

SSH Server

Initiates connection by contacting server
e.g. ssh pi@raspberrypi.local

SSH Client

Server sends random message

Client sends encrypted message

ssh-keygen -b 2048 -t rsa
Private key Public key Public key

Private key
Helloc

Helloc

@?98s
@?98s Public key

@?98s

Helloc

If messages are the same, client is authenticated



HTTPS (SSL/TLS protocol) Illustrated

• Authentication
• Confidentiality

Secure Socket Layer/Transport Layer Security



Client Initiates connection by contacting server and presents list of cipher suites 
and ssl/tls versions
e.g. https://www.google.com/

Server responds with a possible cipher suite from client’s list and confirms the ssl/tls
version
Server sends a copy of its asymmetric public key
Usually using a certificate (X.509)

Client creates a pre-master key and encrypt with server’s public key (verified/authenticated) 
and sends it to server 

Server decrypts the pre-master key with its own asymmetric private key

Client and server now uses the pre-master key to compute a shared secret
key (symmetric session key)

Client sends a message encrypted with the shared-key (symmetric key) to the
server for verification

Server decrypts and verify the message. If ok, server sends back a message
encrypted with the shared-key (symmetric key) to the client for verification

Client and Server now communicate using the shared-key (symmetric key) for the rest of
the session



Relevant Algorithms for asymmetric 
cryptography

• Asymmetric cryptography often rely on cryptographic algorithms 
based on mathematical problems that currently admit no efficient 
solution such as:
• Integer-Factorization Schemes

• Difficulty to factor large integers (e.g. RSA)

• Discrete Logarithm Schemes
• Based on discrete logarithm problem in finite fields (e.g. Diffie-Hellman key exchange, 

Elgamal encryption or the Digital Signature Algorithm)

• Elliptic Curve (EC) Schemes
• Generalization of the discrete logarithm algorithm (e.g. Elliptic Curve Diffie-Hellman key 

exchange (ECDH) and Elliptic Curve Digital Signature Algorithm (ECDSA)



Bits length and security

Algorithm family Cryptosystems Security Level (bit)

80 128 192 256

Integer
factorization

RSA 1024bit 3072 bit 7680 bit 15360 bit

Discrete
logarithm

DH, DSA, Elgamal 1024 bit 3072 bit 7680 bit 15360 bit

Elliptic curves ECDH, ECDSA 160 bit 256 bit 384 bit 512 bit

Symmetric-key AES, 3DES 80 bit 128 bit 192 bit 256 bit

Key length Security estimation

56 – 64 bits short term: a few hours or days

112 – 128 bits Long term: several decades in the absence of quantum computers

256 bits Long term: several decades, even with quantum computers with currently
known quantum computing algorithm

Source: Paar and Pelzl "Understanding Cryptography: A Textbook for Students and Practitioners



A RSA example

• The RSA algorithm is based on Euler’s theorem
• A Swiss Mathematician (Leonard Euler)

• We will now look at important components of RSA algorithms

• Suppose 𝒏 - is a natural number

• 𝚽 𝒏 = Number of positive integers smaller than or equal to 𝒏 with
no common factor except 𝟏 in common with 𝒏
• Search for all positive integers smaller than 𝒏 and relatively prime to 𝒏

• Their gcd with 𝒏 equals 𝟏



• Unique prime factorization theorem
• states that every integer greater than 1 either is a prime number itself or can

be represented as the product of prime numbers

250

25
5

5

10
2

5

250 = 2 × 5 × 5 × 5 = 2 × 53Factors

prime number is an integer (a whole number) that has as its only factors 1 and itself (for example, 2, 17, 23, and 127 are prime)

Prime



Primes and Finding inverse

• Euler’s Phi Function

• Euler’s Theorem

• Euclidean Algorithm

• Extended Euclidean Algorithm



Euler’s Phi Function

• Important to determine how many numbers in a given integer set s
are prime to s: 𝚽(𝒔)

Example #1: if s = 5, associated set is {0,1,2,3,4}

gcd(0,5) = 5
gcd(1,5) = 1*
gcd(2,5) = 1*
gcd(3,5) = 1*
gcd(4,5) = 1*

𝚽 𝟓 = 𝟒 (4 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑎𝑟𝑒 𝑐𝑜𝑝𝑟𝑖𝑚𝑒 𝑡𝑜 5)

Example #2: if s = 6, associated set is {0,1,2,3,4,5}

gcd(0,6) = 6
gcd(1,6) = 1*
gcd(2,6) = 2
gcd(3,6) = 3
gcd(4,6) = 2
gcd(5,6) = 1*

𝚽 𝟔 = 𝟐 (2 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑎𝑟𝑒 𝑐𝑜𝑝𝑟𝑖𝑚𝑒 𝑡𝑜 6)



𝑠 = 𝑝1
𝑒1 ∙ 𝑝2

𝑒2 ∙. . .∙ 𝑝𝑛
𝑒𝑛

Let 𝒔 have the following canonical factorization

Where the 𝑝𝑖 are distinct prime numbers and 𝑒𝑖 are positive integers, then: 

𝚽 𝒔 = ෑ

𝒊=𝟏

𝒏

(𝑝𝑖
𝑒𝑖−𝑝𝑖

𝑒𝑖−1)

Example: Let s = 250

𝑠 = 250 = 10 ∙ 25 = 2 ∙ 5 ∙ 5 ∙ 5 = 2. 53 = 𝑝1
𝑒1 ∙ 𝑝2

𝑒2

Given 2 distinct prime factors. Then:

𝚽 𝒔 = 𝟐𝟏 − 𝟐𝟎 ∙ 𝟓𝟑 − 𝟓𝟐 = 𝟐 ∙ 𝟏𝟎𝟎 = 𝟐𝟎𝟎

There are 200 integers within the range {0,1,…,249} that are coprime to 250



Other properties of Euler’s Phi Function

1. If p denotes a prime number, then 𝚽 𝒑 = 𝒑 − 𝟏: because all the
p-1 integers 1,2,3,…,p-1 are relatively prime to p
e.g. 𝚽 𝟓 = 𝟒 𝒂𝒏𝒅𝚽 𝟔 = 𝟐

2. If p and q are two distinct primes, then:
𝚽 𝒑𝒒 = (𝒑 − 𝟏)(𝒒 − 𝟏)



Euler’s Theorem

If a and n are two relatively prime 
positive integers (i.e. gcd(a,n) = 1):

𝑎Φ(𝑛) 𝑚𝑜𝑑 𝑛 ≡ 1



Euler’s Theorem

We are interested in the case when n is the product of two
distinct primes, p and q

Since Φ 𝑛 = 𝑝 − 1 𝑞 − 1
𝑎Φ(𝑛)𝑚𝑜𝑑 𝑛 = 𝑎Φ(𝑝−1)(𝑞−1) 𝑚𝑜𝑑 𝑝𝑞 ≡ 1



Euler’s Theorem: Example

Let a=5 and n=6

5Φ(6)𝑚𝑜𝑑 6 = ?

Φ(6) = Φ 2 × 3 = 2 − 1 3 − 1 = 1 × 2 = 2
52 𝑚𝑜𝑑 6 = 25 𝑚𝑜𝑑 6 = 1



Further dependencies of RSA

• RSA is also based on the problem that it is extremely hard to factor
very large numbers

• But it is easy to compute the greatest common divisor (gcd) using the
Euclidean Algorithm



Euclidean Algorithm

• Euclidean Algorithm can be used to compute the gcd of two positive 
numbers a and b

Example:
𝑎 = 84 = 2 × 2 × 3 × 7
𝑏 = 30 = 2 × 3 × 5
gcd 30,84 = 2 × 3 = 6

For large numbers, manual factoring is often not possible
We therefore use the Euclidean Algorithm

This algorithm is based on a simple observation that:
gcd 𝑎, 𝑏 = gcd 𝑎 − 𝑏, 𝑏 𝑤𝑒 𝑎𝑠𝑠𝑢𝑚𝑒 𝑎 > 𝑏 𝑎𝑛𝑑 𝑎, 𝑏 ∈ ℤ+



Euclidean Algorithm

By recursively applying the above, 
we will eventually obtain

gcd (rl, 0) = rl

𝑟0 = 84
𝑟1 = 30
𝑟0 − 𝑟1 = 54 = 2 × 3 × 3
𝑟1 = 30 = 2 × 3 × 5
gcd 30,54 = gcd 30,84 = 2 × 3 = 6

gcd 𝑟0, 𝑟1 = gcd 𝑟0 − 𝑟1, 𝑟1



Example

1 gcd(84, 30)

2 gcd(54, 30)

3 gcd(30, 24)

4 gcd(24, 6)

5 gcd(18, 6)

6 gcd(12, 6)

7 gcd(6, 6)

8 gcd(6, 0)

= 6



Euclidean Algorithm

• It follows that we can minimize the steps, if we use the modulus 
system

𝑬𝒖𝒄𝒍𝒊𝒅𝒆𝒂𝒏 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎
𝑰𝒏𝒑𝒖𝒕: 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑟0 𝑎𝑛𝑑 𝑟1 𝑤𝑖𝑡ℎ 𝑟0 > 𝑟1
𝑶𝒖𝒕𝒑𝒖𝒕: gcd(𝑟0, 𝑟1)
𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏: 𝑖 = 1
𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎

1.   DO
1.1 𝑖 = 𝑖 + 1
1.2 𝑟𝑖 = 𝑟𝑖−2 𝑚𝑜𝑑 𝑟𝑖−1

𝑊𝐻𝐼𝐿𝐸 𝑟𝑖 ≠ 0
2. 𝑅𝐸𝑇𝑈𝑅𝑁

gcd 𝑟0, 𝑟1 = 𝑟𝑖−1

1 gcd(30, 84 mod 30)

gcd(30, 24)

2 gcd(24, 30 mod 24)

gcd(24, 6)

3 gcd(6, 24 mod 6)

gcd(6, 0)

= 6

gcd 𝑟0, 𝑟1 = gcd(𝑟1, 𝑟0 𝑚𝑜𝑑 𝑟1)



Exercise (3mins)

Solve:

gcd 𝑟0, 𝑟1 , where 𝑟0= 95 and 𝑟1 = 35

using: gcd 𝑟0, 𝑟1 = gcd(𝑟1, 𝑟0 𝑚𝑜𝑑 𝑟1)
1 gcd(35, 95 mod 35)

gcd(35, 25)

2 gcd(25, 35 mod 25)

gcd(25, 10)

3 gcd(10, 25 mod 10)

gcd(10, 5)

4 gcd(5, 10 mod 5)

gcd(5, 0)

= 5

Solution



Extended Euclidean Algorithm (EEA)

• Extension of Euclidean Algorithm

• Efficient to solve Modular Inverse problem which is important in 
public key cryptography

Recall that the inverse of two integers (𝑟0, 𝑟1) only exist if:
gcd 𝑟0, 𝑟1 = 1

EEA extends the gcd computation by also computing a linear combination of the form:
gcd 𝑟0, 𝑟1 = s. 𝑟0 + t. 𝑟1
Thus, in each iteration of EA, the remainder 𝑟𝑖 = s. 𝑟0 + t. 𝑟1



Assume we want to compute the inverse of 𝑟1 𝑚𝑜𝑑 𝑟0 (where 𝑟0 > 𝑟1) 
Note that the inverse only exists if:

gcd 𝑟0, 𝑟1 = 1

If we apply EEA:

s. 𝑟0 + t. 𝑟1 = 1 = gcd 𝑟0, 𝑟1

Reducing the equation modulo 𝑟0, we obtain:

s. 𝑟0 + t. 𝑟1 = 1
s. 0 + t. 𝑟1 ≡ 1 𝑚𝑜𝑑 𝑟0

𝑟1. 𝑡 ≡ 1 𝑚𝑜𝑑 𝑟0

This implies that 𝒕 is the inverse of 𝒓𝟏:

𝒕 = 𝒓𝟏
−𝟏 𝒎𝒐𝒅 𝒓𝟎



Calculate 𝟐𝟖−𝟏 𝒎𝒐𝒅 𝟕𝟓
i.e. Find the inverse of 28 in modulo 75
𝑟0 = 75 and 𝑟1 = 28

Verify: 3. 𝑟0 − 8. 𝑟1 = 3 × 75 − 8 × 28 = 1

𝟐𝟖−𝟏 𝒎𝒐𝒅 𝟕𝟓 = −𝟖𝒎𝒐𝒅 𝟕𝟓 = 𝟔𝟕 Remember: -8 = 75-8 = 67 (mod 75)

𝒓𝒊 = 𝐬 . 𝒓𝟎 + [𝐭]. 𝒓𝟏

75 = 2 × 28 + 𝟏𝟗 19 = 1 . 𝑟0 + [−2]. 𝑟1

28 = 1 × 19 + 𝟗 9 = 28 − 1 × 19
9 = 𝑟1 − 1 × ( 1 . 𝑟0 + [−2]. 𝑟1)
9 = −𝑟0 + 3. 𝑟1

19 = 2 × 9 + 𝟏 1 = 19 − 2 × 9
1 = 1 . 𝑟0 + −2 . 𝑟1 − 2 × (−𝑟0 + 3. 𝑟1)
= 3. 𝑟0 − 8. 𝑟1

9 = 9 × 1 + 0



𝑬𝒙𝒕𝒆𝒏𝒅𝒆𝒅 𝑬𝒖𝒄𝒍𝒊𝒅𝒆𝒂𝒏 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 (𝐄𝐄𝐀)
𝑰𝒏𝒑𝒖𝒕: 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑟0 𝑎𝑛𝑑 𝑟1 𝑤𝑖𝑡ℎ 𝑟0 > 𝑟1
𝑶𝒖𝒕𝒑𝒖𝒕: gcd 𝑟0, 𝑟1 𝑎𝑛𝑑 𝑠, 𝑡 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑔𝑐𝑑(𝑟0, 𝑟1) = s. 𝑟0 + t. 𝑟1
𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏:
𝑠0 = 1 𝑡0 = 0
𝑠1 = 0 𝑡1 = 1
𝑖 = 1
𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎

1.   DO
1.1 𝑖 = 𝑖 + 1
1.2 𝑟𝑖 = 𝑟𝑖−2 𝑚𝑜𝑑 𝑟𝑖−1
1.3 𝑞𝑖−1 = (𝑟𝑖−2− 𝑟𝑖) ∕ 𝑟𝑖−1
1.4 𝑠𝑖 = 𝑠𝑖−2 − 𝑞𝑖−1 × 𝑠𝑖−1
1.5 𝑡𝑖 = 𝑡𝑖−2 − 𝑞𝑖−1 × 𝑡𝑖−1

𝑊𝐻𝐼𝐿𝐸 𝑟𝑖 ≠ 0
2. 𝑅𝐸𝑇𝑈𝑅𝑁

gcd 𝑟0, 𝑟1 = 𝑟𝑖−1
𝑠 = 𝑠𝑖−1
𝑡 = 𝑡𝑖−1



Sum-up

• We can easily compute the gcd of two integers, and decide whether
they are relatively prime. 

• We can easily compute the inverse of an integer using EEA

• If a and b are coprime, then we can easily compute an integer d that
satisfies: 
𝒃 ∙ 𝒅 𝒎𝒐𝒅 𝒂 = 𝟏.
𝒃 ∙ 𝒅 = 𝟏 (𝒎𝒐𝒅 𝒂).

It then means d is the multiplicative inverse of b in modulo system a



The RSA Public Key Cryptography - protocol

• Most widely used public key cryptosystem

• Named after Ron Rivest, Adi Shamir, and Len Adleman

Process:
1. Key generation
2. Encryption and Decryption



RSA Key Generation

• Derive -
• Public Key: 𝑘𝑝𝑢𝑏 = (𝑛, 𝑒)

• Private Key: 𝑘𝑝𝑟 = (𝑛, 𝑑)

STEPS:

1. 𝐶ℎ𝑜𝑜𝑠𝑒 𝑡𝑤𝑜 𝑙𝑎𝑟𝑔𝑒 𝑝𝑟𝑖𝑚𝑒𝑠 𝒑 𝑎𝑛𝑑 𝒒

2. 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝒏 = 𝒑 ∙ 𝒒

3. 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝚽 𝒏 = 𝒑 − 𝟏 𝒒 − 𝟏

4. 𝑆𝑒𝑙𝑒𝑐𝑡 𝑡ℎ𝑒 𝑝𝑢𝑏𝑙𝑖𝑐 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 𝒆 ∈ 𝟏, 𝟐, . . . , 𝚽 𝒏 − 𝟏 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝒈𝒄𝒅 𝒆,𝚽 𝒏 = 𝟏

5. 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑘𝑒𝑦 𝒅 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝒅 ∙ 𝒆 ≡ 𝟏𝒎𝒐𝒅 𝜱(𝒏)

Step #4 is very important: Otherwise we cannot compute 𝒅 ∈ 𝟏, 𝟐, . . . , 𝚽 𝒏 − 𝟏



RSA Encryption and Decryption

• RSA Encryption
• Given the Public Key: 𝑘𝑝𝑢𝑏 = (𝑛, 𝑒) and the plaintext 𝒙, the encryption

function is:
• 𝑦 = 𝑒𝑘𝑝𝑢𝑏 𝑥 ≡ 𝑥𝑒 𝑚𝑜𝑑 𝑛

• RSA Decryption
• Given the Private Key: 𝑘𝑝𝑟 = (𝑛, 𝑑) and the ciphertext 𝒚, the decryption

function is:
• 𝑥 = 𝑑𝑘𝑝𝑟 𝑦 ≡ 𝑦𝑑 𝑚𝑜𝑑 𝑛



Example
• Alice wants to send an encrypted message to Bob. 

• Bob computes his RSA key parameters (Public/Private keys). 

• Then Bob sends Alice his public key. 

• Alice encrypts the message, x and sends the ciphertext y to Bob. 

• Bob decrypts the ciphertext y using his private key.

Message x = 4

1. Choose p=3 and q=11
2. n=p.q=33
3. 𝛷 𝑛 =(3-1)(11-1)=20
4. Choose e=3
5. 𝑑 ≡ 𝑒−1 ≡ 7𝑚𝑜𝑑 20
kpub=(33,3) and kpr=(33,7)kpub=(33,3)

y = xe mod n 
= 43 mod 33 = 31

(n, e)

y = 31 x = yd mod n 
= 317 mod 33 = 4 = x

BobAlice



Exercise – 5mins
• Assume you know that n=91 and the public key e=5

• Use integer factorization to determine the private key d.  

Solution
Step 1. Factors: 91 = 7 * 13
Brute-force by choosing the factors in pairs

Step 2. Find 𝜱(𝒏) = (p-1)(q-1)
𝜱(𝒏) = 6*12 = 72
Step 3. Is gcd(e, 𝜱(𝒏)) = 1?
gcd(5, 72) = 1

Proceed if Step 3 succeeds
Step 4: 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑘𝑒𝑦 𝒅 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝒅 ∙ 𝒆 ≡ 𝟏𝒎𝒐𝒅𝜱(𝒏)
i.e. 𝒅 ≡ 𝒆−𝟏 𝒎𝒐𝒅𝜱(𝒏)
We now find 𝐝 = 𝟓−𝟏 𝒎𝒐𝒅 𝟕𝟐
𝒅 = 29 (We have found the private key)



Mathematical attacks on RSA

Decimal digits Bit length Date

100 330 April 1991

110 364 April 1992

120 397 June 1993

129 426 April 1994

140 463 Feb. 1999

155 512 Aug. 1999

200 663 May 2005

232 768 Dec. 2009

RSA factoring records since 1991

See: https://en.wikipedia.org/wiki/RSA_Factoring_Challenge



Fast exponentiation: Square-and-Multiply
method

• How do we deal with very large exponentiation
• Computational problem if we need to compute e.g. 21024 by multiplication

method

• Works using two basic operations
1. Square the current result

2. Multiply the current result by the base element

210 = 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2
21024 = 2 * 2 * 2 *…



• Algorithm is based on scanning the bit of the exponent from the left bit (MSB) to 
the right (LSB)

• For each iteration (1st bit to the last bit), 
• the current result is squared
• if the current bit has value 1, then the result is also multiplied by base number

𝑥26 = 𝑥110102 = 𝑥(ℎ4ℎ3ℎ2ℎ1ℎ0)2

Example

Step Bit processed

0 𝑥 = 𝑥1 ℎ4 = 1

1a (𝑥1)2= 𝑥2 = 𝑥102 ℎ3: SQ

1b 𝑥2 ∙ 𝑥 = 𝑥3 = 𝑥112 ℎ3 = 1:MUL

2a (𝑥3)2= 𝑥6 = 𝑥1102 ℎ2: SQ

2b ℎ2 = 0: 𝐧𝐨 MUL

3a (𝑥6)2= 𝑥12 = 𝑥11002 ℎ1: SQ

3b 𝑥12 ∙ 𝑥 = 𝑥13 = 𝑥11012 ℎ1 = 1:MUL

4a (𝑥13)2= 𝑥26 = 𝑥110102 ℎ0: SQ

4b ℎ0 = 0: 𝐧𝐨 MUL



Finding Large Primes

• Generating primes p and q

• How common are primes?

• How fast can we check for primes?

RNG
Primality

test

෤𝑝

𝑝𝑟𝑖𝑚𝑒 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

𝑎

෤𝑝 is prime
or 
෤𝑝 is composite



How common are primes?

• We need to know whether the probability of a randomly picked prime 
p is sufficiently high

• Primes become less dense as the value increases
• 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,…

• 𝑃 𝑝 𝑖𝑠 𝑝𝑟𝑖𝑚𝑒 ≈
2

ln(𝑝)

• Example: To have a 1024-bit modulus n,  the primes p and q should
have lengths of about 512 bits each (i.e. 𝑝, 𝑞 ≈ 2512)

• 𝑃 𝑝 𝑖𝑠 𝑝𝑟𝑖𝑚𝑒 ≈
2

ln 2512
=

2

512 ln 2
≈

1

177

Means we need to test  approx. 177 random numbers before we find one that is prime



How fast can we check for primes?

Difficult problem!!!

Naive approach

boolean isPrime(integer n)
if (n < 2) return false
for(i=2 to n-1)

if(n/i)
return false

return true

e.g. Test 264 for primality
= 1.8*1019

Time complexity = O(n)

Time complexity = O(1019)



How fast can we check for primes

Fermat’s Little Theorem for Primality Testing

If 𝒑 is a prime and 𝒂 is any integer not divisible by 𝒑 then:

𝑎𝑝 ≡ 𝑎 (𝑚𝑜𝑑 𝑝)

Can further be stated in the form:

𝑎𝑝−1 ≡ 1 (𝑚𝑜𝑑 𝑝)

Check:
p=7
𝑎 ∈ 2,3,4,5
a=2
𝑎𝑝−1 𝑚𝑜𝑑 𝑝 = 26 𝑚𝑜𝑑 7
64 mod 7= 1

a=3
𝑎𝑝−1 𝑚𝑜𝑑 𝑝 = 36 𝑚𝑜𝑑 7
729 mod 7= 1
.
.
.

p is prime if 𝑎𝑝−1 ≡ 1 (𝑚𝑜𝑑 𝑝)



Algorithms based on Discrete Logarithm

• Diffie-Hellman Key Exchange

• Elgamal

• DSA



Discrete Logarithm
Consider y = 2x mod 11 (11 is prime)

x=1, y=2 x=6, y=9
x=2, y=4 x=7, y=7
x=3, y=8 x=8, y=3
x=4, y=5 x=9, y=6
x=5, y=10 x=10, y=1

Each non-zero value in the set Z11= 

{0,1,2,3,4,5,6,7,8,9,10} is a value of x for some y. 

In this case, 2 is a primitive root of  the set 

Z11= {1,2,3,4,5,6,7,8,9,10}. 

𝑇ℎ𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 3𝑥 𝑚𝑜𝑑 7 = 6

31 = 3 = 30 × 3 ≡ 1 × 3 = 3 ≡ 3 (𝑚𝑜𝑑 7)
32 = 9 = 31 × 3 ≡ 3 × 3 = 3 ≡ 2 (𝑚𝑜𝑑 7)
33= 27 = 32 × 3 ≡ 2 × 3 = 3 ≡ 6 (𝑚𝑜𝑑 7)
34= 81 = 33 × 3 ≡ 6 × 3 = 3 ≡ 4 (𝑚𝑜𝑑 7)
35 = 243 = 34 × 3 ≡ 4 × 3 = 3 ≡ 5 (𝑚𝑜𝑑 7)
36 = 729 = 35 × 3 ≡ 5 × 3 = 3 ≡ 1 (𝑚𝑜𝑑 7)
37 = 2187 = 36 × 3 ≡ 1 × 3 = 3 ≡ 3 (𝑚𝑜𝑑 7)

Sources: wikipedia
homepage.divms.uiowa.edu/~ghosh/1914F-6.pptx

𝑇ℎ𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 2𝑥 𝑚𝑜𝑑 11 = 10



Discrete Logarithm

A  primitive root modulo a prime number p is an integer b in Zp

such that every nonzero element of  Zp is a power of b

y = be mod p

Zp = {0, 1, 2, 3, 4,…,p-1}

where 𝒃 ∈ 𝒁𝒑

In other words, b is a generator of the multiplicative group of integers modulo p.



Discrete Logarithm

• Given 2x (mod 11) = y in the set {1,2,3,4,5,6,7,8,9,10} , you can find a 

unique value of x for a given y. 

• We will say that x is the discrete logarithm of y (mod 11) (to the base 2).

• It is easy to compute 2x (mod 11) = y. 

• But it is extremely difficult to solve 2? (mod 11) = y. 

• This is the discrete logarithm problem. For example, how difficult is it to 

compute  g? mod p = q where p is a 100 digit prime number? 

• This is the heart of DL-based cryptography.



Discrete Logarithm Problem (DLP)

• Discrete logarithm is an inverse operation in modulo arithmetic

𝐴𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝒌 𝑡ℎ𝑎𝑡 𝑠𝑜𝑙𝑣𝑒𝑠 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝒃𝒌 = 𝒂 𝑖𝑠 𝑡𝑒𝑟𝑚𝑒𝑑 𝑎 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑙𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚

We can further write in logarithm form:
𝑘 = 𝑙𝑜𝑔𝑏𝑎

• Considered to be computationally hard problem
• That is, no efficient method is known for computing them in general



Diffie-Hellman Key Exchange

• Enables two parties to derive a common secret key by communicating over an 
insecure channel

• Solves the key distribution problem

• Used in many open/commercial crypto protocols
• Secure Shell (SSH)
• Transport Layer Security (TLS)
• Internet Protocol Security (IPSec)

• Based on primitive root element and cyclic group

• Basic idea is that exponentiation in ℤ 𝑝
∗ , p prime is a one way function and 

exponentiation is commutative

𝒌 = (𝑵𝒙)𝒚 ≡ (𝑵𝒚)𝒙 𝐦𝐨𝐝 𝐩

• The value 𝑘 = (𝑁𝑥)𝑦 ≡ (𝑁𝑦)𝑥 mod p is the joint key to be used as 
the session key between the two parties



Agree and choose prime number, p and a base number N (primitive root)

Choose a secret exponent, 𝒙 ∶
𝒙 ∈ {𝟐,… , 𝒑 − 𝟐}

Choose a secret exponent, 
𝒚 ∶ 𝒚 ∈ {𝟐,… , 𝒑 − 𝟐}

Computes 𝐀 ≡ 𝑁𝑥𝑚𝑜𝑑 𝑝 Computes 𝐁 ≡ 𝑁𝑦𝑚𝑜𝑑 𝑝

Alice sends A to Bob

Bob sends B to Alice

Computes 𝑘𝐴,𝐵 ≡ 𝐵𝑥𝑚𝑜𝑑 𝑝 Computes 𝑘𝐵,𝐴 ≡ 𝐴𝑦𝑚𝑜𝑑 𝑝

Both Alice and Bob now have a joint session key k

𝑘 = 𝑘𝐴,𝐵 ≡ 𝑘𝐵,𝐴 (Surprise!!!)

BobAlice



Agree and choose prime number, p=29 and a base number N=2

Choose a secret exponent, 
𝒙 = 𝟓 [𝒙 ∶ 𝒙 ∈ 𝟐,… , 𝟐𝟕 ]

Choose a secret exponent, 
𝒚 = 𝟏𝟐[𝒚 ∶ 𝒚 ∈ 𝟐,… , 𝟐𝟕 ]

Computes 𝐀 ≡ 25 ≡ 3𝑚𝑜𝑑 29 Computes 𝐁 ≡ 212 ≡ 7𝑚𝑜𝑑 29

Alice sends A=3 to Bob

Bob sends B=7 to Alice

Computes 𝑘𝐴,𝐵 = 𝐵𝑥 = 75 ≡ 16 𝑚𝑜𝑑 29 Computes 𝑘𝐵,𝐴 = 𝐴𝑦 = 312 ≡ 16 𝑚𝑜𝑑 29

Both Alice and Bob now have a joint session key k=16

𝑘 = 16

BobAlice



Why do they get the same key?

• Proof (commutative property):

• Alice computes:
• 𝐵𝑥 ≡ (𝑁𝑦)𝑥 ≡ 𝑁𝑥𝑦𝑚𝑜𝑑 𝑝

• Bob computes:
• 𝐴𝑦 ≡ (𝑁𝑥)𝑦 ≡ 𝑁𝑥𝑦𝑚𝑜𝑑 𝑝

Question: Can someone compute k given that
A, B, N,and p are all known?



Elgamal Encryption Protocol

Message x

1. Choose large prime p
2. Choose primitive element α ∈ ℤ𝑝

∗

𝑜𝑟 𝑖𝑛 𝑎 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 ℤ𝑝
∗

3. Choose 𝑘𝑝𝑟 = 𝑑 ∈ {2,. . . ,p-2}

4. 𝑘𝑝𝑢𝑏 ≡ 𝛽 = 𝛼𝑑 𝑚𝑜𝑑 𝑝kpub=(𝑝, 𝛼, 𝛽)

5. Compute masking key

𝑘𝑀 ≡ 𝑘𝐸
𝑑 𝑚𝑜𝑑 𝑝

6. Decrypt y
𝑥 ≡ 𝑦. 𝑘𝑀

−1 𝑚𝑜𝑑 𝑝

1. Choose i ∈ {2,. . . ,p-2}
2. Compute ephemeral key

𝑘𝐸 ≡ 𝛼𝑖 𝑚𝑜𝑑 𝑝
3. Compute masking key

𝑘𝑀 ≡ 𝛽𝑖 𝑚𝑜𝑑 𝑝
4. 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑥
𝑦 ≡ 𝑥. 𝑘𝑀 𝑚𝑜𝑑 𝑝 (𝑘𝐸,y)

Bob
Alice



Message x=26 Generate p=29 and 𝜶=2 
Choose 𝑘𝑝𝑟 = 𝑑 = 12

Compute 𝛽 = 𝛼𝑑 ≡ 7𝑚𝑜𝑑 29

kpub=(𝑝, 𝛼, 𝛽)=(29,2,7)

Compute 𝑘𝑀 = 𝑘𝐸
𝑑 ≡ 16 𝑚𝑜𝑑 29

Decrypt y
𝑥 = 𝑦. 𝑘𝑀

−1 10.20 ≡ 26 𝑚𝑜𝑑 29

Choose i = 5
Compute 𝑘𝐸 = 𝛼𝑖 ≡ 3 𝑚𝑜𝑑 29
Compute 𝑘𝑀 ≡ 𝛽𝑖 ≡ 16 𝑚𝑜𝑑 29
𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑦 ≡ 𝑥. 𝑘𝑀 ≡ 10 𝑚𝑜𝑑 29

(𝑘𝐸,y)=(3,10)

BobAlice



• In Elgamal protocol
• Alice sends only one message to Bob as opposed to 2 in DHKE

• Elgamal is a probabilistic encryption scheme
• i.e. encrypting 𝑥1 using the same public keys produce two different ciphertexts 𝑦1 ≠ 𝑦2. 

Because i is chosen at random from {2,. . . ,p-2}



Elliptic Curve Cryptography

• Uses smaller key-size compared to RSA and Elgamal

• Based on generalized discrete logarithm problem

• Cyclic group

• One-way properties

• It is possible to realize DL-protocols such as DHKE using elliptic curves

𝒚

𝒙

𝑥2 + 𝑦2 = 𝑟2 𝑜𝑣𝑒𝑟 ℝ

𝒙

𝑎. 𝑥2 + 𝑏. 𝑦2 = 𝑐 𝑜𝑣𝑒𝑟 ℝ
We obtain an Ellipse by introducing constants a
and b to the circle equation

𝒚



The promise of Elliptic curves

Algorithm family Cryptosystems Security Level (bit)

80 128 192 256

Integer
factorization

RSA 1024bit 3072 bit 7680 bit 15360 bit

Discrete
logarithm

DH, DSA, Elgamal 1024 bit 3072 bit 7680 bit 15360 bit

Elliptic curves ECDH, ECDSA 160 bit 256 bit 384 bit 512 bit

Symmetric-key AES, 3DES 80 bit 128 bit 192 bit 256 bit



• We can therefore form certain types of curves from polynomial 
equations

• Curves are considered over a finite field

• F(p) 
• Arithmetic is performed modulo a prime p.

The elliptic curve over ℤ𝑝, 𝑝 > 3, 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑎𝑖𝑟𝑠 (𝑥, 𝑦) ∈ ℤ𝑝

that fulfills
𝑦2 ≡ 𝑥3 + 𝑎. 𝑥 + 𝑏 𝑚𝑜𝑑 𝑝

together with infinity point Ο, where
𝑎, 𝑏 ∈ ℤ𝑝

with the condition that 4. 𝑎3 + 27. 𝑏2 ≠ 0 𝑚𝑜𝑑 𝑝.



Discrete Logarithm Problem on ECC

• The security of ECC depends on the difficulty of Elliptic Curve Discrete
Logarithm Problem (ECDLP)

• If P and Q are two points on an elliptic curve such that:
• 𝑘𝑃 = 𝑄 𝑤ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑎 𝑠𝑐𝑎𝑙𝑎𝑟

• Given P and Q, it is computationally infeasible to obtain k, if k is sufficiently
large.

• k is the discrete logarithm of Q to the base P

• The main operation involved in ECC is point multiplication
• Multiplication of a scalar k with any point P on the curve to give Q on the

curve



Finite Fields for EC

• Prime Field 𝐹𝑝

• Binary Field 𝐹2
𝑚



Elliptic Curves over prime field 𝐹𝑝
1. Let 𝐹𝑝 𝑏𝑒 𝑎 𝑝𝑟𝑖𝑚𝑒 𝑓𝑖𝑛𝑖𝑡𝑒 𝑓𝑖𝑒𝑙𝑑: p is an odd prime

2. Let 𝑎, 𝑏 ∈ 𝐹𝑝 satisfy 4. 𝑎3 + 27. 𝑏2 ≢ 0 𝑚𝑜𝑑 𝑝

3. Then an elliptic curve 𝐸(𝐹𝑝) 𝑜𝑣𝑒𝑟 𝐹𝑝 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠
𝑎, 𝑏 ∈ 𝐹𝑝 consists of the set of solutions or points P = (𝑥, 𝑦) 𝑓𝑜𝑟 𝑥, 𝑦 ∈
𝐹𝑝 to the equation:

𝐸: 𝑦2 ≡ 𝑥3 + 𝑎. 𝑥 + 𝑏 𝑚𝑜𝑑 𝑝
together with an extra point O called point at infinity.

4. The equation 𝑦2 ≡ 𝑥3 + 𝑎. 𝑥 + 𝑏 (𝑚𝑜𝑑 𝑝) is called the defining equation
of 𝐸(𝐹𝑝).

5. For a given point P = 𝑥𝑝, 𝑦𝑝 , 𝑥𝑝 is the x-coordinate of P, and 𝑦𝑝 is the y-
cordinate of P

6. Number of points on 𝐸(𝐹𝑝) is denoted by #𝐸(𝐹𝑝)
• 𝑝 + 1 − 2 𝑝 ≤ #𝐸(𝐹𝑝) ≤ 𝑝 + 1 + 2 𝑝. (Hasse Theorem)



Arithmetic Operations on prime Field 𝐹𝑝

1. Adding a point at infinity to itself:
𝑂 + 𝑂 = 𝑂.

2. Adding a point at infinity to any other point:
𝑥, 𝑦 + 𝑂 = 𝑂 + 𝑥, 𝑦 = 𝑥, 𝑦 ∀ (𝑥, 𝑦) ∈ 𝐸(𝐹𝑝).

1. Adding two points with the same x-coordinates when the points
are either distinct or have y=0:

𝑥, 𝑦 + 𝑥,−𝑦 = 𝑂 ∀ (𝑥, 𝑦) ∈ 𝐸(𝐹𝑝). 

i.e the negative of the point 𝑥, 𝑦 is − 𝑥, 𝑦 = 𝑥, −𝑦



4. Adding two points with different x-coordinates

Let 
𝑥1, 𝑦1 ∈ 𝐸(𝐹𝑝) and 𝑥2, 𝑦2 ∈ 𝐸(𝐹𝑝) be two points such that 𝑥1 ≠ 𝑥2. Then

𝑥1, 𝑦1 + 𝑥2, 𝑦2 = 𝑥3, 𝑦3 , where:
𝑥3 = 𝑠2 − 𝑥1 − 𝑥2 (𝑚𝑜𝑑 𝑝)

𝑦3 = 𝑠 ∙ (𝑥1 − 𝑥3) − 𝑦1 (𝑚𝑜𝑑 𝑝)

where s is the slope:

𝑠 =
𝑦2−𝑦1

𝑥2−𝑥1
(𝑚𝑜𝑑 𝑝)

5. Adding a point to itself (point doubling)

Let 
𝑥1, 𝑦1 ∈ 𝐸(𝐹𝑝) be a point such that 𝑦1 ≠ 0. Then

𝑥1, 𝑦1 + 𝑥1, 𝑦1 = 𝑥3, 𝑦3 , where:
𝑥3 = 𝑠2 − 2 ∙ 𝑥1 (𝑚𝑜𝑑 𝑝)

𝑦3 = 𝑠 ∙ (𝑥1 − 𝑥3) − 𝑦1 (𝑚𝑜𝑑 𝑝)

where s is computed as:

𝑠 =
3∙𝑥1

2+𝑎

(2∙𝑦1)
(𝑚𝑜𝑑 𝑝)



Example

Double the point P = (5,1) on curve E defined over a small field 𝐹17 𝑝 = 17 , 𝑎 =
2 𝑎𝑛𝑑 𝑏 = 2

𝑬: 𝑦2 ≡ 𝑥3 + 2𝑥 + 2 𝑚𝑜𝑑 17

First we compute s:

𝑠 = 2 ∙ 1 −1 3 ∙ 52 + 2 = 2−1 ∙ 9 = 9 ∙ 9 = 13 (𝑚𝑜𝑑 17)

Then
𝑥3 = 132 − 2 ∙ 5 𝑚𝑜𝑑 17 = 6
𝑦3 = 13 5 − 6 − 1 𝑚𝑜𝑑 17 = −14 = 3 𝑚𝑜𝑑 17

2P = (5,1) + (5,1) = (6,3) (mod 17) 



Find all points on the curve 𝑬: 𝑦2 ≡ 𝑥3 + 2𝑥 + 2 𝑚𝑜𝑑 17 .

Start with the primitive element P = (5,1)
#𝑬 = ?

2P = (5,1) + (5,1) = (6,3) (mod 17)

3P = 2P+P = (10,6)

4P = 3P+P = (3,1)

5P = (9,16) 

.

.

.

18P = (5, 16)

19P = O

20P = 19P + P = O + P = P

21P = 20P +P = 2P

.

.

.

(Cyclic group)
#𝑬 = 𝟏𝟗



• The set of points on 𝐸(𝐹𝑝) forms a group under the addition rule

• The group is commutative meaning that:
• 𝑃1 + 𝑃2 = 𝑃2 + 𝑃1 ∀ 𝑃1, 𝑃2 ∈ 𝐸(𝐹𝑝)

• ECC relies on scalar multiplication of elliptic curve points
• Given an integer k and a point 𝑃 ∈ 𝐸(𝐹𝑝), scalar multiplication is the process

of adding P to itself k times

• i.e. 𝑘 × 𝑃 𝑜𝑟 𝑘𝑃



Point Multiplication

• A point P on the elliptic curve is multiplied with a scalar k to obtain
point Q (kP = Q)

• The multiplication operation uses:
• Point addition (J + K = L)

• Point doubling (2J = L)

• Ex. If k = 23, then kP = 23.P = 2(2(2(2P) + P) + P) + P. (uses both point addition
and point doubling repeatedly)



Elliptic Curves over binary Field 𝐹2
𝑚

• Involves arithmetic of integer of length m bits

• Considered as binary polynomial of degree m-1

• The binary string 𝑎𝑚−1. . . 𝑎1 𝑎0 can be expressed as polynomial 
𝑎𝑚𝑥

𝑚−1 + 𝑎𝑚−1𝑥
𝑚−2+ . . . +𝑎1𝑥 + 𝑎0 𝑤ℎ𝑒𝑟𝑒 𝑎𝑖 = 0 𝑜𝑟 1

• Ex. The 4 bit number 11012 can be expressed by the polynomial
• 𝑥3 + 𝑥2 + 1. where 𝑥 = 2

• Coefficients of the polynomial can either be 0 or 1

• Uses irreducible polynomial(s)



Elliptic Curves over binary Field 𝐹2
𝑚

1. Let 𝐹2
𝑚𝑏𝑒 𝑎 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 2 𝑓𝑖𝑛𝑖𝑡𝑒 𝑓𝑖𝑒𝑙𝑑

2. Let 𝑎, 𝑏 ∈ 𝐹2
𝑚 satisfy 𝑏 ≠ 0 𝑖𝑛 𝐹2

𝑚

3. Then an elliptic
curve 𝐸(𝐹2

𝑚) 𝑜𝑣𝑒𝑟 𝐹2
𝑚 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑎, 𝑏 ∈

𝐹2
𝑚consists of the set of solutions or points P = (𝑥, 𝑦) 𝑓𝑜𝑟 𝑥, 𝑦 ∈

𝐹2
𝑚to the equation:

𝑦2 + 𝑥 ∙ 𝑦 = 𝑥3 + 𝑎. 𝑥2 + 𝑏 𝑖𝑛 𝐹2
𝑚

together with an extra point O called point at infinity.

4. Number of points on 𝐸(𝐹2
𝑚) is denoted by #𝐸(𝐹2

𝑚)

• 2𝑚 + 1 − 2 2𝑚 ≤ #𝐸(𝐹𝑝) ≤ 2𝑚 + 1 + 2 2𝑚. (Hasse Theorem)



Polynomial Arithmetic Operations over binary 
Field 𝐹2

𝑚

We use the field 𝐹2
4 on irreducible polynomial 𝑓 𝑥 = 𝑥4 + 𝑥 + 1

m=4



1. Addition

Given two polynomials A = 𝑥3 + 𝑥2 + 1 and B = 𝑥2 + 𝑥
A + B (mod 2) = 𝑥3 + 2𝑥2 + 𝑥 + 1 𝑚𝑜𝑑 2 = 𝑥3 + 0 ∙ 𝑥2 + 𝑥 + 1 (since 2mod 2 = 0)
𝐴 + 𝐵 = 𝑥3 + 𝑥 + 1 mod 2
𝐴 = 11012
𝐵 = 01102
𝐴 + 𝐵 = 10112

2. Subtraction

Given two polynomials A = 𝑥3 + 𝑥2 + 1 and B = 𝑥2 + 𝑥
A - B (mod 2) = 𝑥3 − 𝑥 + 1 𝑚𝑜𝑑 2 = 𝑥3 + 𝑥 + 1 (since -1 mod 2 = 1)
𝐴 − 𝐵 = 𝑥3 + 𝑥 + 1 mod 2
𝐴 = 11012
𝐵 = 01102
𝐴 − 𝐵 = 10112



3. Multiplication

Given two polynomials A = 𝑥3 + 𝑥2 + 1 and B = 𝑥2 + 𝑥

A * B = 𝑥5 + 2𝑥4 + 𝑥3 + 𝑥2 + 𝑥 𝑚𝑜𝑑 2 = 𝑥5 + 0 ∙ 𝑥4 + 𝑥3 + 𝑥2 + 𝑥
𝐴 ∗ 𝐵 = 𝑥5 + 𝑥3 + 𝑥2 + 𝑥 mod 2

Since m=4, we have to reduce the result to polynomial of degree less than m
i.e. 𝑥5 + 𝑥3 + 𝑥2 + 𝑥 mod 𝑓(𝑥)
= (𝑥4 + 𝑥 + 1)𝑥 + 𝑥5 + 𝑥3 + 𝑥2 + 𝑥
= 2𝑥5 + 𝑥3 + 2𝑥2 + 2𝑥
= 𝑥3 (𝑚𝑜𝑑 2)

𝐴 = 11012
𝐵 = 01102
𝐴 ∗ 𝐵 = 10002



4. Division

Given two polynomials A = 𝑥3 + 𝑥2 + 1 and B = 𝑥2 + 𝑥
The division:
𝐴

𝐵
𝑚𝑜𝑑 𝑓 𝑥 = 𝐴 ∗ 𝐵−1(𝑚𝑜𝑑 𝑓 𝑥 ). Where 𝐵−1is the multiplicative inverse of B and𝑓 𝑥 is the irreducible

polynomial

EEA can be used to compute the multiplicative inverse

By introducing auxilliary polynomials 𝑠 𝑥 and t 𝑥 :
𝑠 𝑥 𝑓 𝑥 + 𝑡 𝑥 𝐵 = gcd 𝑓 𝑥 , 𝐵 = 1

If we reduce modulo f(x), we obtain:

𝑠 𝑥 . 0 + 𝑡 𝑥 𝐵 ≡ 1 𝑚𝑜𝑑 𝑓 𝑥
𝑡 𝑥 ≡ 𝐵−1 𝑚𝑜𝑑 𝑓 𝑥



Irreducible polynomials

• Analogous to modulus p in modular arithmetic

• Polynomial of degree m that cannot be expressed as the product of
two polynomials of lesser degree.
𝐹2
𝑚 𝑠ℎ𝑜𝑢𝑙𝑑 ℎ𝑎𝑣𝑒 (𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑) 𝑚 ∈ {113, 131, 163, 193, 233, 239, 283, 409, 571}

Field Reduction Polynomials

𝐹2
113 𝑓 𝑥 = 𝑥113 + 𝑥9 + 1

𝐹2
131 𝑓 𝑥 = 𝑥131 + 𝑥8 + 𝑥3 + 𝑥2 + 1

𝐹2
163 𝑓 𝑥 = 𝑥163 + 𝑥7 + 𝑥6 + 𝑥3 + 1

𝐹2
193 𝑓 𝑥 = 𝑥193 + 𝑥15 + 1

𝐹2
233 𝑓 𝑥 = 𝑥233 + 𝑥74 + 1

𝐹2
239 𝑓 𝑥 = 𝑥239 + 𝑥36 + 1 or 𝑓 𝑥 = 𝑥239 + 𝑥158 + 1

𝐹2
283 𝑓 𝑥 = 𝑥283 + 𝑥12 + 𝑥7 + 𝑥5 + 1

𝐹2
409 𝑓 𝑥 = 𝑥409 + 𝑥87 + 1

𝐹2
571 𝑓 𝑥 = 𝑥571 + 𝑥10 + 𝑥5 + 𝑥2 + 1



Domain parameters for 𝐹𝑝

• Sextuple 𝑇 = 𝑝, 𝑎, 𝑏, 𝐺, 𝑛, ℎ :
• p = prime number defined for the finite field 𝐹𝑝
• a, b are parameters defining the curve 𝑦2 ≡ 𝑥3 + 𝑎. 𝑥 + 𝑏 (𝑚𝑜𝑑 𝑝)

• G is the base point 𝑥𝐺 , 𝑦𝐺
• n is the order of the elliptic curve (scalar k is chosen between 0 and n-1)

• h is the cofactor ℎ =
#𝐸(𝐹𝑝)

𝑛
, where #𝐸(𝐹𝑝) is the number of points on the curve



Domain parameters for 𝐹2
𝑚

• Septuple 𝑇 = 𝑚, 𝑓 𝑥 , 𝑎, 𝑏, 𝐺, 𝑛, ℎ :
• m = length of bits of element in the finite field

• f(x) is the irreducible polynomial of degree m

• a, b are parameters defining the curve 𝑦2 + 𝑥 ∙ 𝑦 = 𝑥3 + 𝑎. 𝑥2 + 𝑏

• G is the base point 𝑥𝐺 , 𝑦𝐺
• n is the order of the elliptic curve (scalar k is chosen between 0 and n-1)

• h is the cofactor ℎ =
#𝐸(𝐹2

𝑚)

𝑛
, where #𝐸(𝐹2

𝑚) is the number of points on the

elliptic curve



Elliptic Curve Diffie-Hellman Key Exchange 
(ECDH)
• Domain parameters for ECDH

• Choose a prime 𝑝 and the elliptic curve 𝑬: 𝑦2 ≡ 𝑥3 + 𝑎 ∙ 𝑥 +
𝑏 𝑚𝑜𝑑 𝑝 .

• Choose a primitive element P = (𝑥𝑝, 𝑦𝑝).



kpubA= 𝐴

3. Compute: 𝑏𝐴 = 𝑇𝐴𝐵

1. Choose 𝑘𝑝𝑟𝐴= 𝑎 ∈ {2,3,. . . ,#E-1}

2. Compute
𝑘𝑝𝑢𝑏𝐴 = 𝑎𝑃 = 𝐴 = (𝑥𝐴, 𝑦𝐴)

1. Choose 𝑘𝑝𝑟𝐵= 𝑏 ∈ {2,3,. . . ,#E-1}

2. Compute
𝑘𝑝𝑢𝑏𝐵 = 𝑏𝑃 = 𝐵 = (𝑥𝐵 , 𝑦𝐵)

kpubB= 𝐵

3. Compute: 𝑎𝐵 = 𝑇𝐴𝐵

Joint secret between Alice and Bob: 𝑻𝑨𝑩 = (𝒙𝑨𝑩, 𝒚𝑨𝑩)

BobAlice



kpubA= 𝐴

3. Compute: 𝑏𝐴 = 𝑇𝐴𝐵= 10 10,6 = (13,10)

1. Choose 𝑘𝑝𝑟𝐴= 𝑎 = 3

2. Compute 𝑘𝑝𝑢𝑏𝐴 = 3𝑃 = 𝐴 = (10,6)

1. Choose 𝑘𝑝𝑟𝐵= 𝑏 = 10

2. Compute 𝑘𝑝𝑢𝑏𝐵 = 10𝑃 = 𝐵 = (7,11)

kpubB= 𝐵

3. Compute: 𝑎𝐵 = 𝑇𝐴𝐵 = 3 7,11 = (13,10)

Example:
Consider ECDH with the following domain parameters 
prime 𝑝 = 17 and the elliptic curve 𝑬: 𝑦2 ≡ 𝑥3 + 2𝑥 + 2 𝑚𝑜𝑑 17 .
which forms a cyclic group of order #E = 19. The base point P = (5,1).

BobAlice



Why do they get the same key?

• Proof (Associative property):

• Alice computes:
• 𝑎𝐵 = 𝑎(𝑏𝑃)

• Bob computes:
• 𝑏𝐴 = 𝑏(𝑎𝑃)



Elliptic curve Diffie-Hellman Problem

• Solve either of the discrete logarithm problems:

• 𝑎 = 𝑙𝑜𝑔𝑝𝐴

• 𝑏 = 𝑙𝑜𝑔𝑝𝐵



Bit length and security of Elliptic Curve
Cryptography

[𝑙𝑜𝑔2𝑝] ∈ 192, 224, 256, 384, 521

we can rewrite as:

𝑝 ∈ {2192, 2224, 2256, 2384, 2521}



Quiz – 5mins
1. Asymmetric cryptography uses:

a) Public and private keys
b) A secret key known to two parties
c) Public keys

2. The security level of 128-bit asymmetric key is the same as 128-bit symmetric
key

a) True
b) False

3. The security of RSA is based on the difficulty of
a) Solving the logarithm problem
b) Factoring large prime numbers
c) Solving quadratic problem

4. A 4-bit (11012) message in an Elliptic curve can be expressed in polynomial 
form as:

a) x4+x2+1
b) x3+x2+x+1
c) x3+x2+1



Protocols using asymmetric cryptography

• S/MIME
• GPG, an implementation of OpenPGP
• Internet Key Exchange
• PGP
• ZRTP, a secure VoIP protocol
• Secure Socket Layer, now codified as the IETF standard Transport Layer

Security (TLS)
• SILC
• SSH
• Bitcoin
• Off-the-Record Messaging


